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Introduction

B 
iostatistics is the practical application of statistical concepts and tech-
niques to topics in biology. Because biology is such a broad field —  

studying all forms of life from viruses to trees to fleas to mice to people — 
biostatistics covers a very wide area, including designing biological 
 experiments, safely conducting research on human beings, collecting 
and verifying data from those studies, summarizing and displaying that 
data, and analyzing the data to draw meaningful conclusions from it.

No book of reasonable size can hope to span all the subspecialties of bio-
statistics, including molecular biology, genetics, agricultural studies, animal 
research (in the lab and in the wild), clinical trials on humans, and epidemio-
logical research. So I’ve concentrated on the most widely applicable topics 
and on the topics that are most relevant to research on humans (that is, 
clinical research). I chose these topics on the basis of a survey of graduate-
level biostatistics curricula from major universities. I hope it covers most of 
the topics you’re most interested in; but if it doesn’t, please tell me what you 
wish I had included. You can e-mail me at jcp12345@gmail.com, and I’ll try 
to respond to your message.

About This Book
I wrote this book as a reference — something you go to when you want infor-
mation about a particular topic. So you don’t have to read it from beginning 
to end; you can jump directly to the part you’re interested in. In fact, I hope 
you’ll be inclined to pick it up from time to time, open it to a page at random, 
read a page or two, and get a little something useful from it.

This book generally doesn’t show you the detailed steps to perform every 
statistical calculation by hand. That may have been necessary in the mid-
1900s, when statistics students spent hours in a “computing lab” (that is, a 
room that had an adding machine in it) calculating a correlation coefficient, 
but nowadays computers do all the computing. (See Chapter 4 for advice on 
choosing statistical software.) When describing statistical tests, my focus 
is always on the concepts behind the method, how to prepare your data for 
analysis, and how to interpret the results. I keep mathematical formulas and 
derivations to a minimum in this book; I include them only when they help 
explain what’s going on. If you really want to see them, you can find them in 
many biostatistics textbooks, and they’re readily available online.

mailto:jcp12345@gmail.com
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Because good experimental design is crucial for the success of any research, 
this book gives special attention to the design of clinical trials and, specifi-
cally, to calculating the number of subjects you need to study. You find 
easy-to-apply examples of sample-size calculations in the chapters describing 
significance tests in Parts III, IV, and V and in Chapter 26.

Conventions Used in This Book
Here are some typographic conventions I use throughout this book:

 ✓ When I introduce a new term, I put the term in italics and define it. I also 
use italics occasionally to emphasize important information.

 ✓ In bulleted lists, I often place the most important word or phrase of each 
bulleted item in boldface text. The action parts of numbered steps are 
also boldface.

 ✓ I show web links (URLs) as monotype text.

 ✓ When this book was printed, some web addresses may have needed 
to break across two lines of text. If that happened, rest assured that I 
haven’t put in any extra characters (like hyphens) to indicate the break. 
So, when using one of these web addresses, just type in exactly what 
you see in this book, pretending as though the line break doesn’t exist.

 ✓ Whenever you see the abbreviation sd or SD, it always refers to the 
 standard deviation.

 ✓ Anytime you see the word significant in reference to a p value, it means 
p ≤ 0.05.

 ✓ When you see the lowercase italicized letter e in a formula, it refers to 
the mathematical constant 2.718..., which I describe in Chapter 2. (On 
the very rare occasions that it stands for something else, I say so.)

 ✓ I alternate between using male and female pronouns (instead of saying 
“he or she,” “him or her,” and so on) throughout the book. No gender 
preference is intended.

What You’re Not to Read
Although I try to keep technical (that is, mathematical) details to a minimum, 
I do include them occasionally. The more complicated ones are marked by 
a Technical Stuff icon. You can skip over these paragraphs, and it won’t pre-
vent you from understanding the rest of the material. You can also skip over 
anything that’s in a sidebar (text that resides in a box). Sidebars contain non-
essential but interesting stuff, like historical trivia and other “asides.”
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Foolish Assumptions
I wrote this book to help several kinds of people, and I assume you fall into 
one of the following categories:

 ✓ Students at the undergraduate or graduate level who are taking a course 
in biostatistics and want help with the topics they’re studying in class

 ✓ People who have had no formal biostatistical training (perhaps no sta-
tistical training at all) but find themselves having to deal with data from 
biological or clinical studies as part of their job

 ✓ Doctors, nurses, and other healthcare professionals who want to carry 
out clinical research

If you’re interested in biostatistics, then you’re no dummy. But I bet you some-
times feel like a dummy when it comes to biostatistics, or statistics in general, 
or mathematics. Don’t feel bad — I’ve felt that way many times over the years, 
and still feel like that whenever I’m propelled into an area of biostatistics I 
haven’t encountered before. (If you haven’t taken a basic statistics course 
yet, you may want to get Statistics For Dummies by Deborah J. Rumsey, PhD — 
published by Wiley — and read parts of that book first.)

The important thing to keep in mind is that you don’t have to be a math 
genius to be a good biological or clinical scientist — one who can intelligently 
design experiments, execute them well, collect and analyze data properly, 
and draw valid conclusions. You just have to have a good grasp of the basic 
concepts and know how to utilize the sophisticated statistical software that 
has become so widely available.

How This Book Is Organized
I’ve divided this book into six parts, and each part contains several chapters. 
The following sections describe what you find in each part.

Part I: Beginning with Biostatistics Basics
This part can be thought of as providing preparation and context for the 
remainder of this book. Here, I bring you up to speed on math and statistics 
concepts so that you’re comfortable with them throughout this book. Then 
I provide advice on selecting statistical software. And finally I describe one 
major setting in which biostatistics is utilized — clinical research.
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Part II: Getting Down and Dirty with Data
This part focuses on the raw material that biostatistical analysis works 
with — data. You probably already know the two main types of data: numeri-
cal (or quantitative) data, such as ages and heights, and non-numerical data, 
such as names and genders. Part II gets into the more subtle (but very impor-
tant) distinctions between different data types.

You discover how to collect data properly, how to summarize it concisely 
and display it as tables and graphs, and how to describe the quality of the 
data (its precision and the uncertainties associated with your measured 
values). And you find out how the precision of your raw data affects the pre-
cision of other things you calculate from that data.

Part III: Comparing Groups
This part describes some of the most common statistical analyses you carry 
out on your data — comparing variables between groups. You discover how 
to answer questions like these: Does an arthritis medication reduce joint pain 
more than a placebo? Does a history of diabetes in a parent predict the likeli-
hood of diabetes in the child? And if so, by how much?

You also find out how to show that there’s no meaningful difference between 
two groups. Is a generic drug really equivalent to the name brand? Does a 
new drug not interfere with normal heart rhythm? This endeavor entails more 
than just not proving that there is a difference — absence of proof is not 
proof of absence, and there are special ways to prove that there’s no impor-
tant difference in your data.

Throughout this part, I discuss common statistical techniques for comparing 
groups such as t tests, ANOVAs, chi-square tests, and the Fisher Exact test.

Part IV: Looking for Relationships  
with Correlation and Regression
This part takes you through the very broad field of regression analysis — 
studying the relationships that can exist between variables. You find out 
how to test for a significant association between two or more variables and 
how to express that relationship in terms of a formula or equation that pre-
dicts the likely value of one variable from the observed values of one or more 
other variables. You see how useful such an equation can be, both for under-
standing the underlying science and for doing all kinds of practical things 
based on that relationship.
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After reviewing the simple straight-line and multiple linear regression tech-
niques you probably encountered in a basic stats course, you discover how 
to handle the more advanced problems that occur in the real world of biolog-
ical research — logistic regression for analyzing yes-or-no kinds of outcomes, 
like “had a miscarriage”; Poisson regression for analyzing the frequency of 
recurring events, such as the number of hospitalizations for emphysema 
patients; and nonlinear regression when the relationship between the vari-
ables can take on a complicated mathematical form.

Part V: Analyzing Survival Data
This part is devoted to the analysis of one very special and important kind 
of data in biological research — survival time (or, more generally, the time to 
the first occurrence of some particular kind of event). You see what makes 
this type of data so special and why special methods are needed to deal with 
it correctly. You see how to calculate survival curves, test for a significant 
difference in survival between two or more groups of subjects, and apply the 
powerful and general methods of regression analysis to survival data.

Part VI: The Part of Tens
The final two chapters of this book provide “top-ten lists” of handy informa-
tion and rules that you’ll probably refer to often. Chapter 25 describes ten 
of the most common statistical distribution functions that you encounter 
in biostatistical research. Some of these distributions describe how your 
observed data values are likely to fluctuate, and some are used primarily in 
conjunction with the common significance tests (t-tests, chi-square tests, and 
ANOVAs). Chapter 26 contains a set of handy rules of thumb you can use to 
get quick estimates of the number of subjects you need to study in order to 
have a good chance of obtaining significant results.

Icons Used in This Book
Icons (the little drawings in the margins of this book) are used to draw your 
attention to certain kinds of material. Here’s what they mean:

 This icon signals something that’s really worth keeping in mind. If you take 
away anything from this book, it should be the material marked with this icon.

 I use this icon to flag things like derivations and computational formulas that 
you don’t have to know or understand but that may give you a deeper insight 
into other material. Feel free to skip over any information with this icon.
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 This icon refers to helpful hints, ideas, shortcuts, and rules of thumb that you 
can use to save time or make a task easier. It also highlights different ways of 
thinking about some topic or concept.

 This icon alerts you to a topic that can be tricky or a concept that people 
often misunderstand.

Where to Go from Here
You’re already off to a good start — you’ve read this introduction, so you 
have a good idea of what this book is all about (at least what the major parts 
of the book are all about). For an even better idea of what’s in it, take a look 
at the Contents at a Glance — this drills down into each part, and shows you 
what each chapter is all about. Finally, skim through the full-blown table of 
contents, which drills further down into each chapter, showing you the sec-
tions and subsections of that chapter.

If you want to get the big picture of what biostatistics encompasses (at least 
those parts of biostatistics covered in this book), then read Chapter 1. This 
is a top-level overview of the basic concepts that make up this entire book. 
Here are a few other special places you may want to jump into:

 ✓ If you’re uncomfortable with mathematical notation, then Chapter 2 is 
the place to start.

 ✓ If you want a quick refresher on basic statistics (the kind of stuff that 
would be taught in a Stats 101 course), then read Chapter 3.

 ✓ You can get an introduction to clinical research in Chapters 5 and 6.

 ✓ If you want to know about collecting, summarizing, and graphing data, 
jump to Part II.

 ✓ If you need to know about working with survival data, you can go right 
to Part V.

 ✓ If you’re puzzled about some particular statistical distribution function, 
then look at Chapter 25.

 ✓ And if you need to do some quick sample-size estimates, turn to Chapter 26.



Part I
Beginning with  

Biostatistics Basics

 Visit www.dummies.com for great (and free!) Dummies content online.
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In this part . . .
 ✓ Get comfortable with mathematical notation that uses numbers, 

special constants, variables, and mathematical symbols — a 
must for all you mathophobes.

 ✓ Review basic statistical concepts — such as probability, 
randomness, populations, samples, statistical inference, and 
more — to get ready for the study of biostatistics.

 ✓ Choose and acquire statistical software (both commercial and 
free), and discover other ways to do statistical calculations, 
such as calculators, mobile devices, and web-based 
programs.

 ✓ Understand clinical research — how biostatistics influences 
the design and execution of clinical trials and how treatments 
are developed and approved.



Chapter 1

Biostatistics 101
In This Chapter
▶ Getting up to speed on the prerequisites for biostatistics
▶ Understanding the clinical research environment
▶ Surveying the special procedures used to analyze biological data
▶ Estimating how many subjects you need
▶ Working with distributions

B 
iostatistics deals with the design and execution of scientific experi-
ments on living creatures, the acquisition and analysis of data from 

those experiments, and the interpretation and presentation of the results 
of those analyses.

This book is meant to be a useful and easy-to-understand companion to the 
more formal textbooks used in graduate-level biostatistics courses. Because 
most of these courses concentrate on the more clinical areas of biostatistics, 
this book focuses on that area as well. In this chapter, I introduce you to the 
fundamentals of biostatistics. 

Brushing Up on Math and Stats Basics
Chapters 2 and 3 are designed to bring you up to speed on the basic math 
and statistical background that’s needed to understand biostatistics and to 
give you some supplementary information (or “context”) that you may find 
generally useful while you’re reading the rest of this book.

 ✓ Many people feel unsure of themselves when it comes to understanding 
mathematical formulas and equations. Although this book contains fewer 
formulas than many other statistics books do, I do use them when they 
help illustrate a concept or describe a calculation that’s simple enough 
to do by hand. But if you’re a real mathophobe, you probably dread look-
ing at any chapter that has a math expression anywhere in it. That’s why 
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I include Chapter 2 — to show you how to read and understand the basic 
mathematical notation that I use in this book. I cover everything from 
basic mathematical operations to functions and beyond.

 ✓ If you’re in a graduate-level biostatistics course, you’ve probably already 
taken one or two introductory statistics courses. But that may have 
been a while ago, and you may not feel too sure of your knowledge of 
the basic statistical concepts. Or you may have little or no formal sta-
tistical training, but now find yourself in a work situation where you 
interact with clinical researchers, participate in the design of research 
projects, or work with the results from biological research. If so, then 
you definitely want to read Chapter 3, which provides an overview of the 
fundamental concepts and terminology of statistics. There, you get the 
scoop on topics such as probability, randomness, populations, samples, 
statistical inference, accuracy, precision, hypothesis testing, nonpara-
metric statistics, and simulation techniques.

Doing Calculations with  
the Greatest of Ease

This book generally doesn’t have step-by-step instructions for performing 
statistical tests and analyses by hand. That’s because in the 21st century you 
shouldn’t be doing those calculations by hand; there are lots of ways to get 
a computer to do them for you. So this book describes calculations only to 
illustrate the concepts that are involved in the procedure, or when the cal-
culations are simple enough that it’s feasible to do them by hand (or even in 
your head!).

Unlike some statistics books that assume that you’re using a specific soft-
ware package (like SPSS, SAS, Minitab, and so on), this book makes no such 
assumption. You may be a student at a school that provides a commercial 
package at an attractive price or requires that you use a specific product 
(regardless of the price). Or you may be on your own, with limited financial 
resources, and the big programs may be out of your reach. Fortunately, you 
have several options. You can download some excellent free programs from 
the Internet. And you can also find a lot of web pages that perform specific 
statistical tests and procedures; collectively they can be thought of as the 
equivalence of a free online statistical software package. Chapter 4 describes 
some of these options — commercial products, free programs, web-based 
calculators, and others.
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Concentrating on Clinical Research
 This book covers topics that are applicable to all areas of biostatistics, 

concentrating on methods that are especially relevant to clinical research — 
 studies involving people. If you’re going to do research on human subjects, 
you’ll want to check out two chapters that deal with clinical trials (and specifi-
cally drug development trials). These studies are among the most rigorously 
designed, closely regulated, expensive, and consequential of all types of sci-
entific research — a mistake here can have disastrous human and financial 
 consequences. So even if you don’t expect to ever take part in drug develop-
ment research, clinical trials (and the statistical issues they entail) are worth a 
close look.

Two chapters look at clinical research — one from the inside, and one from 
the outside.

 ✓ Chapter 5 describes the statistical aspects of clinical trials:

	 •	Designing the study: This aspect includes formulating goals, objec-
tives, and hypotheses; estimating the required sample size; and 
composing the protocol.

	 •	Executing the study: During this phase, you’re dealing with regula-
tory and subject protection groups, randomization and blinding, 
and collecting data.

	 •	Analyzing the data from the study: At this point, you’re validat-
ing data, dealing with missing data and multiplicity, and handling 
interim analyses.

 ✓ Chapter 6 describes the whole drug development process, from the ini-
tial exploration of promising compounds to the final regulatory approval 
and the subsequent long-term monitoring of the safety of marketed prod-
ucts. It describes the different kinds of clinical trials that are carried out, 
in a logical progression, at different phases of the development process.

Many researchers have run into problems while analyzing their data because 
of decisions they made (or failed to make) while designing and execut-
ing their study. Many of these early errors arise from not understanding, 
or appreciating, the different kinds of data that their study can generate. 
Chapter 7 shows you how to recognize the kinds of data you encounter in 
biological research (numerical, categorical, and date- and time-oriented 
data), and how to collect and validate your data. Then in Chapter 8 you see 
how to summarize each type of data and display it graphically; your choices 
include bar charts, box-and-whiskers charts, and more.
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Drawing Conclusions from Your Data
Most statistical analysis involves inferring, or drawing conclusions about the 
population at large, based on your observations of a small sample drawn 
from that population. The theory of statistical inference is often divided into 
two broad sub-theories — estimation theory and decision theory.

Statistical estimation theory
Chapters 9 and 10 deal with statistical estimation theory, which addresses the 
question of how accurately and precisely you can estimate some population 
parameter (like the mean blood hemoglobin concentration in all adult males, 
or the true correlation coefficient between body weight and blood pressure 
in all adult females) from the values you observe in your sample.

 ✓ In Chapter 9, you discover the difference between accuracy and preci-
sion (they’re not synonymous!), and find out how to calculate the stan-
dard error (a measure of how precise, or imprecise, your observed value 
is) for the things you measure or count from your sample.

 ✓ In Chapter 10, you find out how to construct a confidence interval (the 
range that is likely to include the true population parameter) for any-
thing you can measure or count.

But often the thing you measure (or count) isn’t what you’re really interested 
in. You may measure height and weight, but really be interested in body 
mass index, which is calculated from height and weight by a simple formula. 
If every number you acquire directly has some degree of imprecision, then 
anything you calculate from those numbers will also be imprecise, to a 
greater or lesser extent. Chapter 11 explains how random errors propagate 
through mathematical expressions and shows you how to calculate the stan-
dard error (and confidence interval) for anything you calculate from your 
raw data.

Statistical decision theory
Much of the rest of this book deals with statistical decision theory — how to 
decide whether some effect you’ve observed in your data (such as the differ-
ence in the average value of a variable between two groups or the association 
between two variables) reflects a real difference or association in the popula-
tion or is merely the result of random fluctuations in your data or sampling.
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Decision theory, as covered in this book, can also be divided into two broad 
sub-categories — comparing means and proportions between groups (in 
Part III), and understanding the relationship between two or more variables 
(in Part IV).

Comparing groups
In Part III, you meet (or get reacquainted with) some of the famous-name tests.

 ✓ In Chapter 12, you see how to compare average values between two 
or more groups by using t tests and ANOVAs, and their counterparts 
(Wilcoxon, Mann-Whitney, and Kruskal-Wallis tests) that can be used 
with skewed or other non-normally distributed data.

 ✓ Chapter 13 shows how to compare proportions (like cure rates) between 
two or more groups, using the chi-square and Fisher Exact tests on 
cross-tabulated data.

 ✓ Chapter 14 focuses on one specific kind of cross-tab — the fourfold table 
(having two rows and two columns). It turns out that you can get a lot of 
very useful information from a fourfold table, so it’s worth a chapter of 
its own.

 ✓ In Chapter 15, you see how event rates (also called person-time data) can 
be estimated and compared between groups.

 ✓ Chapter 16 wraps up Part III with a description of a special kind of 
analysis that occurs often in biological research — equivalence and non-
inferiority testing, where you try to show that two treatments or prod-
ucts aren’t really different from each other or that one isn’t any worse 
than the other.

Looking for relationships between variables
Science is, at its heart, the search for relationships, and regression analysis is 
the part of statistics that deals with the nature of relationships between dif-
ferent variables:

 ✓ You may want to know whether there’s a significant association between 
two variables: Do smokers have a greater risk of developing liver cancer 
than nonsmokers, or is age associated with diastolic blood pressure?

 ✓ You may want to develop a formula for predicting the value of a vari-
able from the observed values of one or more other variables: Can you 
predict the duration of a woman’s labor if you know how far along the 
pregnancy is (the gestational age), how many other children she has 
had in the past (her parity), and how much the baby-to-be weighs (from 
ultrasound measurements)?
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 ✓ You may be fitting a theoretical formula to some data in order to esti-
mate one of the parameters appearing in that formula — like determin-
ing how fast the kidneys can remove a drug from the body (a terminal 
elimination rate constant), from measurements of drug concentration in 
the blood at various times after taking a dose of the drug.

Regression analysis can handle all these tasks, and many more besides. 
Regression is so important in biological research that this book devotes 
Part IV to it. But most Stats 101 courses either omit regression analysis 
entirely or cover only the very simplest type — fitting a straight line to a set 
of points. Even second semester statistics courses may go only as far as 
multivariate linear regression, where you can have more than one predictor 
variable.

 If you know nothing of correlation and regression analysis, read Chapter 17, 
which provides an introduction to these topics. I cover simple straight-line 
regression in Chapter 18; I extend that coverage to more than one predictor 
variable in Chapter 19. These three chapters deal with ordinary linear regres-
sion, where you’re trying to predict the value of a numerical outcome vari-
able (like blood pressure or serum glucose) from one or more other variables 
(such as age, weight, and gender) by using a formula that’s a simple summa-
tion of terms, each of which consists of a predictor variable multiplied by a 
regression coefficient.

But in real-world biological and clinical research, you encounter more com-
plicated relationships. Chapter 20 describes logistic regression, where the 
outcome is the occurrence or nonoccurrence of some kind of event, and you 
want to predict the probability that the event will occur. And you find out 
about several other kinds of regression in Chapter 21:

 ✓ Poisson regression, where the outcome can be the number of events that 
occur in an interval of time

 ✓ Nonlinear least-squares regression, where the relationship can be more 
complicated than a simple summation of terms in a linear model

 ✓ LOWESS curve-fitting, where you may have no explicit formula at all that 
describes the data

A Matter of Life and Death: Working 
with Survival Data

Sooner or later, all living things die. And in biological research, it becomes 
very important to characterize that sooner-or-later part as accurately as 
possible. But this characterization can get tricky. It’s not enough to say that 
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people live an average of 5.3 years after acquiring a certain disease. Does 
everyone tend to last five or six years, or do half the people die within the 
first few months, and the other half survive ten years or more? And how do 
you analyze your data when some subjects may far outlive your clinical study 
(that is, they’re still alive when you have to finish your study and write up the 
results)? And how do you analyze people who skip town after a few months, 
so you don’t know whether they lived or died after that?

The existence of problems like these led to the development of a special set 
of techniques specifically designed to deal with survival data. More gener-
ally, they also apply to the time of the first occurrence of other (non-death) 
events as well, like remission or recurrence of cancers, heart attacks, strokes, 
and first bowel movement after abdominal surgery. These techniques, which 
span the whole data analysis process, are all collected in Part V.

To discover how to acquire survival data properly (it’s not as obvious as you 
may think), read Chapter 22, where I also show how to summarize and graph 
survival data, and how to estimate such things as mean and median survival 
time and percent survival to specified time points. A special statistical test 
for comparing survival among groups of subjects is covered in Chapter 23. 
And in Chapter 24, I describe Cox proportional-hazards regression — a spe-
cial kind of regression analysis for survival data.

Figuring Out How Many 
Subjects You Need

Of all the statistical challenges a researcher may encounter, none seems to 
instill as much apprehension and insecurity as calculating the number of 
subjects needed to provide a sufficiently powered study — one that provides 
a high probability of yielding a statistically significant result if the hoped-for 
effect is truly present in the population.

 Because sample-size estimation is such an important part of the design of 
any research project, this book shows you how to make those estimates for 
the situations you’re likely to encounter when doing clinical research. As I 
describe each statistical test in Parts III, IV, and V, I explain how to estimate 
the number of subjects needed to provide sufficient power for that test. In 
addition, Chapter 26 describes ten simple rules for getting a “quick and dirty” 
estimate of the required sample size.
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Getting to Know Statistical Distributions
What statistics book would be complete without a set of tables? Back in 
the not-so-good old days, when people had to do statistical calculations by 
hand, they needed tables of the common statistical distributions (Normal, 
Student t, chi-square, Fisher F, and so on) in order to complete the calcula-
tion of the significance test. But now the computer does all this for you, 
including calculating the exact p value, so these tables aren’t nearly as neces-
sary as they once were.

But you should still be familiar with the common statistical distributions that 
describe how your observations may fluctuate or that may come up in the 
course of performing a statistical calculation. So Chapter 25 contains a list of 
the most well-known distribution functions, with explanations of where you 
can expect to encounter those distributions, what they look like, what some 
of their more interesting properties are, and how they’re related to other dis-
tributions. Some of them are accompanied by a small table of critical values, 
corresponding to significance at the 5 percent level (that is, p = 0.05).



Chapter 2

Overcoming Mathophobia: 
Reading and Understanding 
Mathematical Expressions

In This Chapter
▶ Reading mathematical notation
▶ Understanding formulas and what they mean
▶ Working with arrays (collections of numbers)

F 
ace it: Most people fear math, and statistics is — to a large extent — 
mathematical. I want to show you how to read mathematical expressions 

(which are combinations of numbers, letters, math operations, punctuation, 
and grouping symbols), equations (which connect two expressions with an 
equal sign), and formulas (which are equations that tell you how to calculate 
something), so you can understand what’s in a statistics book or article. I 
also explain how to write formulas, so you can tell a computer how to manip-
ulate your data.

In this chapter, I just use the term formula for simplicity to refer to formulas, 
equations, and expressions.

I show you how to interpret the kinds of mathematical formulas you encoun-
ter throughout this book. I don’t spend too much time explaining what the 
more complicated mathematical operations mean; I concentrate on how 
those operations are indicated in formulas. If you’re not sure about the alge-
bra, you can find an excellent treatment of that in Algebra I For Dummies, 
2nd Edition, and Algebra II For Dummies; both titles are written by Mary Jane 
Sterling and published by Wiley.
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Breaking Down the Basics of 
Mathematical Formulas

For the purposes of this book, you can think of a mathematical formula as 
a shorthand way to describe how to do a certain calculation. Formulas can 
have numbers, special constants, and variables, interspersed with various 
symbols for mathematical operations, punctuation, and typographic effects. 
They’re constructed using rules that have evolved over several centuries 
and which have been become more or less standardized. The following sec-
tions explain two different kinds of formulas (typeset and plain text) that you 
encounter in this book and describe two of the building blocks (constants 
and variables) from which formulas are created.

Displaying formulas in different ways
Formulas can be expressed in print two ways:

 ✓ A typeset format utilizes special symbols spread out in a two- 
dimensional structure, like this:

  

 ✓ A plain text format strings the formula out as a single, long line, which 
is helpful if you’re limited to the characters on a keyboard:

  SD = sqrt(sum((x[i] – m)^2, i, 1, n)/(n – 1))

 You must know how to read both types of formula displays — typeset and 
plain text. The examples in this chapter show both styles.

You may never have to construct a professional-looking typeset formula 
(unless you’re writing a book, like I’m doing right now), but you’ll almost cer-
tainly have to write plain text formulas as part of organizing, preparing, edit-
ing, and analyzing your data.

Checking out the building  
blocks of formulas
No matter how they’re written, formulas are just concise “recipes” that tell 
you how to calculate something or how something is defined. You just have 
to know how to read the recipe. To start, look at the building blocks from 
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which formulas are constructed: constants (whose values never change) and 
variables (names that stand for quantities that can take on different values at 
different times).

Constants
Constants can be represented explicitly (using the numerals 0–9, with or 
without a decimal point) or symbolically (using a letter in the Greek or Roman 
alphabet to stand for a value that’s especially important in mathematics, 
physics, or some other discipline). For example:

 ✓ The Greek letter π (spelled pi and pronounced pie) almost always rep-
resents 3.14159 (plus a zillion more digits), which is the ratio of the cir-
cumference of any circle to its diameter.

 ✓ The strange number 2.71828 (plus a zillion more digits) is called e (usu-
ally italicized). Later in this chapter, I describe one way e is used; you 
see e in statistical formulas throughout this book and in almost every 
other mathematical and statistical textbook. Whenever you see an itali-
cized e in this book, it refers to the number 2.718 unless I explicitly say 
otherwise.

  The official mathematical definition of e is the value that the expression 
 approaches as n gets larger and larger (approaching infinity). 

Unlike π, e has no simple geometrical interpretation, but one (somewhat 
far-fetched) example of where e pops up is this: Assume you put exactly 
one dollar in a bank account that’s paying 100 percent annual interest, 
compounded continuously. After exactly one year, your account will 
have e dollars in it. The interest on your original dollar, plus the interest 
on the interest, would be about $1.72 (to the nearest penny), for a total 
of $2.72 in your account. Start saving for that summer home!

Mathematicians and scientists use lots of other special Greek and Roman 
letters as symbols for special numerical constants, but you need only a few 
of them in your biostatistics work. Pi and e are the most common; I define 
others as they come up.

Variables
The term variable has several slightly different meanings in different fields:

 ✓ In mathematics and the sciences, a variable is a symbol (usually a letter 
of the alphabet) that represents some quantity in a formula. You see 
variables like x and y in algebra, for example.

 ✓ In computer science, a variable is a name (usually made up of one or 
more letters (and perhaps also numeric digits) that refers to a place in 
the computer’s memory where one or more numbers (or other kinds 
of data) can be stored and manipulated. For example, a computer 
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 programmer writing a statistical software program may use a variable 
called SumXY to stand for a quantity that’s used in the computation of a 
correlation coefficient.

 ✓ In statistics, a variable is the data element you collect (by counting, 
measuring, or calculating) and store in a file for analysis. This data 
doesn’t have to be numerical; it can also be categorical or textual. So the 
variables Name, ID, Gender, Birthdate, and Weight refer to the data that 
you acquire on subjects.

Variables names may be written in uppercase or lowercase letters, depend-
ing on typographic conventions or preferences, or on the requirements of the 
software being used.

 In typeset format formulas, variables are always italicized; in plain text formu-
las, they’re not.

Focusing on Operations  
Found in Formulas

A formula tells you how building blocks (numbers, special constants, and 
variables) are to be combined — that is, what calculations you’re supposed to 
carry out on these quantities. But things can get confusing. One symbol (like 
the minus sign) can indicate different things, depending on how it’s used, and 
one mathematical operation (like multiplication) can be represented in differ-
ent ways. The following sections explain the basic mathematical operations 
you see in formulas throughout this book, show how complicated formulas 
can be built from combinations of basic operations, and describe two types of 
equations you’ll encounter in statistical books and articles.

Basic mathematical operations
The four basic mathematical operations are addition, subtraction, multiplica-
tion, and division (ah, yes — the basics you learned in elementary school). 
Different symbols indicate these operations, as you discover in the following 
sections.

Addition and subtraction
Addition and subtraction are always indicated by the + and – symbols, 
respectively, placed between two numbers or variables. The minus sign has 
some other tricks up its sleeve, though:
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 ✓ A minus sign immediately in front of a number means a negative quan-
tity. For example, –5 could indicate five degrees below 0 or a weight loss 
of 5 kilograms.

 ✓ A minus sign in front of a variable tells you to reverse the sign of 
the value of the variable. Therefore, –x means that if x is positive, you 
should now make it negative; but if x is negative, make it positive. Used 
this way, the minus sign is referred to as a unary operator, because it’s 
acting on only one variable.

Multiplication
Multiplication is indicated in several ways, as shown in Table 2-1.

Table 2-1 Multiplication Options
What It Is Example Where It’s Used
Asterisk 2 * 5 Plain text formulas, but 

almost never in typeset 
 formulas

Cross 2 × 5 Typeset formula, between 
two variables or two con-
stants being multiplied 
together

Raised dot 2 · 5 Typeset formula
Something immediately 
in front of a parenthe-
sized expression

2(5 + 3) = 16 Typeset formula

Brackets and curly 
braces

2[6 + (5 + 3)/2] = 20 Typeset formula containing 
“nested” parentheses

Two or more terms run-
ning together

2πr (versus 2 × π × r) In typeset formulas only

 You can’t run terms together to imply multiplication just anytime. For exam-
ple, you can’t replace 5 × 3 with 53 because 53 is an actual number itself. 
And you shouldn’t replace length × width with lengthwidth because people 
may think you’re referring to a single variable named lengthwidth. Run terms 
together to imply multiplication only when it’s perfectly clear from the context 
of the formula that the authors are using only single-letter variable names and 
that they’re describing calculations where it makes sense to multiply those 
variables together.
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Division
Like multiplication, division is indicated in several ways:

 ✓ A slash (/) in plain text formulas

 ✓ A division symbol (÷) in typeset formulas

 ✓ A long horizontal bar in typeset formulas:

  

Powers, roots, and logarithms
The next three mathematical operations — working with powers, roots, and 
logarithms — are all related to the idea of repeated multiplication.

Raising to a power
Raising to a power is a shorthand way to indicate repeated multiplication. 
You indicate raising to a power by

 ✓ Superscripting in typographic formulas, such as 53

 ✓ ** in plain text formulas, such as 5**3

 ✓ ^ in plain text formulas, such as 5^3

All the preceding expressions are read as “five to the third power,” or “five 
cubed,” and tell you to multiply three fives together: 5 × 5 × 5, which gives 
you 125.

These statements about powers are true, too:

 ✓ A power doesn’t have to be a whole number. You can raise a number 
to a fractional power. You can’t visualize this in terms of repeated multi-
plications, but your scientific calculator can show you that 2.63.8 is equal 
to approximately 37.748.

 ✓ A power can be negative. A negative power indicates the reciprocal of 
the quantity: x–1 really means , and, in general, x–n is the same as .

Remember that constant e (2.718…) described in the earlier section 
“Numbers and special constants”? Almost every time you see e used in a 
formula, it’s being raised to some power. It’s almost as if e were born to be 
raised to powers. It’s so common that raising e to a power (that is, to some 
exponent) is called exponentiating, and another way of representing ex in 
plain text is exp(x). And x doesn’t have to be a whole number: Using any 
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scientific calculator or spreadsheet, you can show that exp(1.6) equals 4.953 
(approximately). You see much more of this in other chapters, for example, 
Chapters 20 and 25.

Taking a root
Taking a root involves asking the power question backwards: “What base 
number, when raised to a certain power, gives some specific number?” For 
example, “What number, when squared, gives 100?” Well, 10 × 10, or 102, 
gives 100, so the square root of 100 is 10. Similarly, the cube root of 1,000,000 
is 100 because 100 × 100 × 100, or 1003, is a million.

Root-taking is indicated by a radical sign (√) in a typeset formula, where the 
entire thing to be square-rooted is located “under the roof” of the radical 
sign, as shown here: . You indicate other roots by putting a number in 
the notch of the radical sign. For example, because 28 is 256, the eighth root 
of 256, or , is 2. You also can indicate root-taking by using the fact (from 
algebra) that  is equal to , or as x^(1/n) in plain text.

Looking at logarithms
In addition to root-taking, another way of asking the power question back-
wards is “What exponent (or power) must I raise a certain base number to 
in order to get some specified number?” For root-taking, you specified the 
power and asked for the base. With logarithms, you specify the base and ask 
for the power (or exponent).

For example, “What power must I raise 10 to in order to get 1,000?” The 
answer is 3 because 103 = 1,000. You can say that 3 is the logarithm of 1,000 
(for the base 10), or, in mathematical terms: Log10(1,000) = 3. Similarly, 
because 28 = 256, you say that Log2(256) = 8. And because e1.6 = 4.953, then 
Loge(4.953) = 1.6.

There can be logarithms to any base, but three bases occur frequently 
enough to have their own nicknames:

 ✓ Base-10 logarithms are called common logarithms.

 ✓ Base-e logarithms are called natural logarithms.

 ✓ Base-2 logarithms are called binary logarithms.

 The logarithmic function naming is inconsistent among different authors, 
publishers, and software writers. Sometimes Log means natural logarithm, and 
sometimes it means common logarithm. Often Ln is used for natural logarithm, 
and Log is used for common logarithm. Names like Log10 and Log2 may also be 
used to identify the base.
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 The most common kind of logarithm used in this book is the natural loga-
rithm, so in this book I always use Log to indicate natural (base-e) logarithms. 
When I want to refer to common logarithms, I use Log10 , and when referring to 
binary logarithms, I use Log2.

An antilogarithm (usually shortened to antilog) is the inverse of a logarithm — 
if y is the log of x, then x is the antilog of y. For example, the base-10 logarithm 
of 1,000 is 3, so the base-10 antilog of 3 is 1,000. 

 Calculating an antilog is exactly the same as raising the base to the power of 
the logarithm. That is, the base-10 antilog of 3 is the same as 10 raised to the 
power of 3 (which is 103, or 1,000). Similarly, the natural antilog of any number 
is just e (2.718) raised to the power of that number: The natural antilog of 5 is 
e5, or 148.41, approximately.

Factorials and absolute values
Most mathematical operators are written between the two numbers they oper-
ate on, or before the number if it operates on only one number (like the minus 
sign used as a unary operator). But factorials and absolute values are two 
mathematical operators that appear in typeset expressions in peculiar ways.

Factorials
Lots of statistical formulas contain exclamation points. An exclamation point 
doesn’t mean that you should sound excited when you read the formula 
aloud. An exclamation mark (!) after a number is shorthand for calculating 
that number’s factorial. To find a number’s factorial, you write all the whole 
numbers from 1 to that number and then multiply them all together. For 
example, 5! (read as “five factorial”) is shorthand for 1 × 2 × 3 × 4 × 5, which 
you can work out on your calculator to get the value 120.

Even though standard keyboards have a ! key, most computer programs 
and spreadsheets don’t let you use ! to indicate factorials; you may have to 
write 5!, for example, as FACT(5), Factorial(5), or something similar.

 Here are a few factorials fun facts:

 ✓ They grow very fast: You can calculate that 10! is 3,628,800. And 170! is 
about 7.3 × 10306, which is close to the largest numbers many computers 
can deal with.

 ✓ 0! isn’t 0, but is actually 1 (the same as 1!). That may not make any sense, 
but that’s how it is, so burn it into your memory.

 ✓ The definition of factorial can be extended to fractions and even to 
 negative numbers. You don’t have to deal with those kinds of factorials 
in this book.
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Absolute values
The absolute value is just the value of the number without any minus sign (if 
it was negative in the first place). Indicate absolute value by placing verti-
cal bars immediately to the left and right of the number. So |5.7| is 5.7, and 
|–5.7| is also 5.7. Even though most keyboards have the | symbol, the abso-
lute value is usually indicated in plain text formulas as abs(5.7).

Functions
In this book, a function is a set of calculations that take one or more numeric 
values (called arguments) and produce a numeric result. A function is indi-
cated in a formula (typeset or plain text) by the name of the function, fol-
lowed by a set of parentheses that contain the argument or arguments. 
Here’s an example: sqrt(x) indicates the square root of x.

The common functions have been given (more or less) standard names. The 
preceding sections in this chapter give some: sqrt, exp, log, ln, fact, and abs. 
The common trigonometric functions are sin, cos, tan, and their inverses: 
asin, acos, and atan. Statistics makes use of many specialized functions, like 
FisherF( F, n1, n2), which calculates the value of the integral of the Fisher F 
distribution function at a particular value of F, with n1 and n2 degrees of free-
dom (see Chapter 25 for some of these probability distribution functions).

 When writing formulas using functions, keep in mind that some software is 
case-sensitive and may require all caps, all lowercase, or first-letter capitaliza-
tion; other software may not care. Check the documentation of the software 
you’re working with.

Simple and complicated formulas
Simple formulas have one or two numbers and only one mathematical opera-
tor (for example, 5 + 3). But most of the formulas you’ll encounter are more 
complicated, with two or more operators.

 You need to know the order in which to do calculations, because using dif-
ferent sequences produces different results. Generally, the order in which 
you evaluate the various operations appearing in a complicated formula is 
governed by the interplay of several rules, arranged in a hierarchy. Most com-
puter programs try to follow the customary conventions that apply to typeset 
formulas, but some programs differ; check the software’s documentation.

 Here’s a typical set of operator hierarchy rules. Within each hierarchical level, 
operations are carried out from left to right:
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 1. Evaluate anything within parentheses (or brackets or curly braces or 
absolute-value bars) first.

  This includes the parentheses that follow the name of a function.

 2. In a typeset fraction, evaluate the numerator (everything above the 
horizontal bar) and the denominator (everything below the bar); then 
divide the numerator by the denominator.

 3. Evaluate negation, factorials, powers, and roots.

 4. Evaluate multiplication and division.

 5. Evaluate addition and subtraction.

Equations
An equation has two expressions with an equal sign between them. Most 
equations appearing in this book have a single variable name to the left of 
the equal sign and a formula to the right, like this: . This kind 
of equation defines the variable appearing on the left in terms of the calcu-
lations specified on the right. In doing so, it also provides the “cookbook” 
instructions for calculating (in this case) the SEM for any values of SD and N.

Another type of equation appears in algebra, asserting that the terms on the 
left side of the equation are equal to the terms on the right. For example, the 
equation x + 2 = 3x asserts that x is a number that, when added to 2, pro-
duces a number that’s 3 times as large as the original x. Algebra teaches you 
how to solve this expression for x, and it turns out that the answer is x = 1.

Counting on Collections of Numbers
A variable can refer to one value or to a collection of values, which are gener-
ally called arrays. Arrays can come with one or more dimensions, which you 
can think of as rows, columns, and slices.

One-dimensional arrays
A one-dimensional array can be thought of as a simple list of values. For 
instance, you might record the fasting glucose values (in milligrams per deci-
liter, mg/dL) of five subjects as 86, 110, 95, 125, and 64, and use the variable 
name “Gluc” to refer to this collection of five numbers. Gluc is an array of 
numbers, and each of the five individual glucose values in the collection is an 



27 Chapter 2: Reading and Understanding Mathematical Expressions

element of the Gluc array. The variable name Gluc in a formula refers to the 
whole collection of numbers (five numbers, in this example).

You can refer to one particular element (that is, to the glucose value of one 
particular subject) of this array several ways. The number that indicates 
which element of the array you’re referring to is called the index of the array.

 ✓ In a typeset formula, indexing is usually indicated by subscripts. For 
example, Gluc3 refers to the third number in the collection (in this exam-
ple, 95).

 ✓ In a plain text formula, indexing is usually indicated by brackets, for 
example, Gluc[3].

The index can be a variable. In that case, Gluc[i] would refer to the ith 
element of the array. The variable i would, presumably, have some value 
between 1 and the number of elements in the array (in this example, between 
1 and 5).

 In some programming languages, the indices start at 0 for the first element, 1 
for the second element, and so on, but that can be confusing. In this book, all 
arrays are indexed starting at 1. But be aware that other books and articles 
may use an index-0 scheme.

Higher-dimensional arrays
Two-dimensional arrays can be thought of as describing tables of values, 
with rows and columns (like a block of cells in a spreadsheet), and even 
higher-dimensional arrays can be thought of as describing a whole collection 
of tables. Suppose you measure the fasting glucose on five subjects on each 
of three treatment days. You could think of your 15 measurements being laid 
out in a 5-x-3 table (five subjects by three days). If you want to represent this 
entire table with a single variable name like Gluc, you can use double-indexing, 
with the first index specifying the subject (1 through 5) and the second index 
specifying the day of the measurement (1 through 3). Under that system, 
Gluc[3,2] indicates the fasting glucose for subject 3 on day 2. And Gluc[i,j] 
indicates the fasting glucose for the ith subject on the jth day.

 Special terms are sometimes used to refer to arrays with one or two 
 dimensions:

 ✓ A one-dimensional array is sometimes called a vector. But this can be 
confusing, because the word vector is also used in mathematics, physics, 
and biology to refer to completely different things.
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 ✓ A two-dimensional array is sometimes called a matrix (plural: matrices). 
But this term is usually reserved for two-dimensional arrays of numbers 
that are going to be manipulated by a special set of mathematical rules 
called matrix algebra. Mathematical descriptions of multiple regression 
make extensive use of matrix algebra.

Arrays in formulas
If you see an array name in a formula without any subscripts, it usually 
means you have to evaluate the formula for each element of the array, and 
the result will be an array with the same number of elements. So, if Gluc 
refers to the array with the five values 86, 110, 95, 125, and 64, then the 
expression 2 × Gluc will result in an array with these five values: 172, 220, 
190, 250, and 128.

When an array name appears in a formula with subscripts, the meaning 
depends on the context. It can indicate that the formula is to be evaluated 
only for some elements of the array, or it can mean that the elements of the 
array are to be combined in some way before being used (as I describe in the 
next section).

Sums and products of the  
elements of an array
This symbol strikes terror into the hearts of so many people who read sta-
tistics books and articles: the diabolical Σ (and its less common but even 
scarier cousin, Π). These symbols are simply two uppercase Greek letters — 
sigma and pi — that correspond to the Roman letters S and P, respectively, 
which stand for Sum and Product. These symbols are almost always used in 
front of variables and expressions that represent arrays.

When you see Σ in a formula, just think of it as “add them up.” Assuming an 
array of five numbers (86, 110, 95, 125, and 64) with the name Gluc, you can 
read the expression  as “the sum of the Gluc array,” and simply add all 
five elements to get 86 + 110 + 95 + 125 + 64, which equals 480.

Sometimes the Σ notation is in a slightly more complicated form, where the 
index variable i is displayed under (or to the right of) the sigma and as a 
 subscript of the array name. Read the expression  as “the sum of the 
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Gluc array over all values of the index i,” which produces the same result 
(480) as the simpler, “naked” sigma. The “subscripted sigma” form is more 
useful with multidimensional arrays, when you may want to sum over only 
one of the dimensions. For example, if Ai,j is a two-dimensional array:

then  means that you should sum over the rows (the i subscript) to 
get the one-dimensional array: 35, 23, and 34. And  means to sum 
across the columns (j) to get the one-dimensional array: 58, 34.

Finally, you may see the full-blown official mathematical sigma in all its glory, 
like this:

,

which reads “the sum of the Gluc array, over values of the index i going from 
a to b, inclusive.” So if a was equal to 1, and b was equal to 5, the expression 
would become:

,

which, once again, would say to add up all five elements of the Gluc array 
(giving you a total of 480 again). But if you wanted to omit the first and last 
values of the array from the sum, you could have:

,

which would say to add up only Gluc2 + Gluc3 + Gluc4, to get 110 + 95 + 125, 
which would add up to 330.

The pi symbol (Π) works just like Σ, except that you multiply instead of add:
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Scientific notation: The easy way to work with 
really big and really small numbers

Statistical analysis sometimes generates 
very large or very small numbers, but humans 
are most comfortable working with numbers 
that are between 1 and 100 (or maybe 1 and 
1,000). Numbers much smaller than 1 (like 
0.0000000000005) or much larger than 1,000 
(like 5,000,000,000,000) make most humans ner-
vous. Working with them (the numbers, not the 
humans) is difficult and error-prone.

Fortunately, there’s scientific notation — a 
nifty way to represent very small or very large 
numbers. If you see a number like 1.23 × 107 or 
1.23E7, or 1.23e+7, it simply means “take the 
number 1.23, and then slide the decimal point 
seven spaces to the right (adding zeros as 
needed).” In this case, take 1.23 and think of 

it as having a lot of extra decimal places with 
zeros, like 1.2300000000. Then slide the decimal 
seven places to the right to get 12300000.000 
and clean it up to get 12,300,000.

For very small numbers, the number after the e 
is negative, indicating that you need to slide the 
decimal point to the left. For example, 1.23e–9 is 
the scientific notation for 0.00000000123.

Note: Don’t be misled by the “e” that appears 
in scientific notation — it doesn’t stand for the 
2.718 constant. You should read it as “times ten 
raised to the power of.”

Check out Algebra I For Dummies by Mary 
Jane Sterling (published by Wiley) to see other 
advantages to using scientific notation. 



Chapter 3

Getting Statistical: A Short Review 
of Basic Statistics

In This Chapter
▶ Getting a handle on probability, randomness, sampling, and inference
▶ Tackling hypothesis testing
▶ Knowing about nonparametric statistical tests

T 
his chapter provides a brief overview of some basic concepts that are 
often taught in a one-semester introductory statistics course. They form 

a conceptual framework for topics that I cover in more depth throughout this 
book. Here, you get the scoop on probability, randomness, populations, sam-
ples, statistical inference, hypothesis testing, and nonparametric statistics.

Note: I can only summarize the concepts here; they’re covered in much more 
depth in Statistics For Dummies, 2nd Edition, and Statistics II For Dummies, 
both written by Deborah J. Rumsey, PhD, and published by Wiley. So you 
may want to skim through this chapter to get an idea of what topics you’re 
already comfortable with and which ones you need to brush up on.

Taking a Chance on Probability
Defining probability without using some word that means the same (or nearly 
the same) thing can be hard. Probability is the degree of certainty, the 
chance, or the likelihood that something will happen. Of course, if you then 
try to define chance or likelihood or certainty, you may wind up using the 
word probability in the definition.

Don’t worry; I clear up the basics of probability in the following sections. I 
explain how to define probability as a number, provide a few simple rules of 
probability, and compare probability to odds (these two terms are related 
but not the same thing).
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Thinking of probability as a number
Probability describes the relative frequency of the occurrence of an event 
(like getting heads on a coin flip or drawing the ace of spades from a deck of 
cards). Probability is a number between 0 and 1, although in casual conversa-
tion, you often see probabilities expressed as percentages, often followed by 
the word chance instead of probability. For example: If the probability of rain 
is 0.7, you may hear someone say that there’s a 70 percent chance of rain.

 Probabilities are numbers between 0 and 1 that can be interpreted this way:

 ✓ A probability of 0 means that the event definitely won’t occur.

 ✓ A probability of 1 (or 100 percent) means that the event definitely will 
occur.

 ✓ A probability between 0 and 1 (like 0.7) means that the event will occur 
some part of the time (like 70 percent) in the long run.

The probability of one particular thing happening out of N equally likely 
things that could happen is 1/N. So with a deck of 52 different cards, the 
probability of drawing any one specific card (like the ace of spades) is 1/52.

Following a few basic rules
Here are three basic rules, or formulas, of probabilities — I call them the not 
rule, the and rule, and the or rule. In the formulas that follow, I use Prob as an 
abbreviation for probability, expressed as a fraction (between 0 and 1).

 

Don’t use percentage numbers (0 to 100) in probability formulas.

 

Most of the mathematical underpinning of statistics is based on the careful 
application of the following basic rules to ever more complicated situations:

 ✓ The not rule: The probability of some event X not happening is 1 minus 
the probability of X happening:

  Prob(not X) = 1 – Prob(X)

  So if the probability of rain tomorrow is 0.7, then the probability of no 
rain tomorrow is 1 – 0.7, or 0.3.

 ✓ The and rule: For two independent events, X and Y, the probability of 
event X and event Y both happening is equal to the product of the prob-
ability of each of the two events:

  Prob(X and Y) = Prob(X) × Prob(Y)
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  So, if you flip a fair coin and then draw a card from a deck, what’s the 
probability of getting heads on the coin flip and then drawing the ace of 
spades? The probability of getting heads in a fair coin flip is 1/2, and the 
probability of drawing the ace of spades from a deck of cards is 1/52, so 
the probability of having both of these things happen is (1/2)(1/52), or 
1/104, or 0.0096 (approximately).

 ✓ The or rule: For two independent events, X and Y, the probability of one 
or the other or both events happening is given by a more complicated 
formula, which can be derived from the preceding two rules.

  Prob(X or Y) = 1 – (1 – Prob(X)) × (1 – Prob(Y))

  Suppose you roll a pair of dice. What’s the probability of at least one of 
the dice coming up a 4? If the dice aren’t loaded, there’s a 1/6 chance (a 
probability of 0.167, approximately) of getting a 4 (or any other specified 
number) on any die you roll, so the probability of getting a 4 on at least 
one of the two dice is 1 – (1 – 0.167) × (1 – 0.167), which works out to 1 – 
0.833 × 0.833, or 0.31, approximately.

 The “and” and “or” rules apply only to independent events. For example, 
you can’t use these rules to calculate the probability of a person selected at 
random being obese and hypertensive by using the prevalences (probabili-
ties) of obesity and hypertension in the general population because these two 
medical conditions tend to be associated — if you have one, you’re at greater 
risk of having the other also.

Comparing odds versus probability
You see the word odds used a lot in this book, especially in Chapter 14 (on 
the fourfold cross-tab table) and Chapter 20 (on logistic regression). Odds 
and probability are related, but the two words are not synonymous.

 Odds equal the probability of something happening divided by the probability 
of that thing not happening. So, knowing that the probability of something not 
happening is 1 minus the probability of that thing happening (see the preced-
ing section), you have the formula:

Odds = Probability/(1 – Probability)

With a little algebra (which you don’t need to worry about), you can solve 
this formula for probability as a function of odds:

Probability = Odds/(1 + Odds)

Table 3-1 shows how probability and odds are related.
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Table 3-1 The Relationship between Probability and Odds
Probability Odds Interpretation
1.0 Infinity The event will definitely occur.
0.9 9 The event will occur 90% of the time (is nine times as 

likely to occur as to not occur).
0.75 3 The event will occur 75% of the time (is three times as 

likely to occur as to not occur).
0.667 2 The event will occur two-thirds of the time (is twice as 

likely to occur as to not occur).
0.5 1.0 The event will occur about half the time (is equally 

likely to occur or not occur).
0.333 0.5 The event will occur one-third of the time (is only half 

as likely to occur as to not occur).
0.25 0.3333 The event will occur 25% of the time (is one-third as 

likely to occur as to not occur).
0.1 0.1111 The event will occur 10% of the time (is 1/9th as likely 

to occur as to not occur).
0 0 The event definitely will not occur.

 As you can see in Table 3-1, for very low probability, the odds are very close 
to the probability; but as probability increases, the odds increase faster. By 
the time probability reaches 0.5, the odds have become 1, and as probabil-
ity approaches 1, the odds become infinitely large! This definition of odds is 
consistent with its common-language use. For instance: If the odds of a horse 
losing a race are 3:1, that means you have three chances of losing and one 
chance of winning, for a 0.75 probability of losing.

Some Random Thoughts  
about Randomness

Like probability (which I cover earlier in this chapter), the word random 
is something we use all the time and something we all have some intuitive 
concept of, but find hard to put into precise language. You can talk about 
random events and random variables. Random is a term that applies to the 
data you acquire in your experiments. When talking about a sequence of 
random numbers, random means the absence of any pattern in the numbers 
that can be used to predict what the next number will be.
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 The important idea is that you can’t predict a specific outcome if a random 
element is involved. But that doesn’t mean that you can’t make any statements 
about the collection of random numbers. Statisticians can say a lot about how 
a group of random numbers behave collectively.

The first step in analyzing a set of data is to have a good idea of what the data 
looks like. This is the job of descriptive statistics — to show you how a set of 
numbers are spread around and to show you the relationship between two or 
more sets of data. The basic tool for describing the distribution of values for 
some variable in a sample of subjects is the histogram, or frequency distribu-
tion graph (I describe histograms in more detail in Chapter 8). Histograms 
help you visualize the distributions of two types of variables:

 ✓ Categorical: For categorical variables (such as gender or race), a his-
togram is simply a bar chart showing how many observations fall into 
each category, like the distribution of race in a sample of subjects, as 
shown in Figure 3-1a.

 ✓ Continuous: To make a histogram of a continuous variable (such as 
weight or blood hemoglobin), you divide the range of values into some 
convenient interval, count how many observations fall within each inter-
val, and then display those counts in a bar chart, as shown in Figure 3-1b 
(which shows the distribution of hemoglobin for a sample of subjects).

 

Figure 3-1: 
Histograms 
of categori-
cal (a) and 

continuous 
(b) data.

 
 Illustration by Wiley, Composition Services Graphics

Picking Samples from Populations
The idea of sampling from a population is one of the most fundamental con-
cepts in statistics — indeed, in all of science. For example, you can’t test how 
a chemotherapy drug will work in all people with lung cancer; you can study 
only a limited sample of lung cancer patients who are available to you and 
draw conclusions from that sample — conclusions that you hope will be valid 
for all lung cancer patients.
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In the following sections, I explain how samples are only imperfect reflections 
of the populations they’re drawn from, and I describe the basics of probabil-
ity distributions.

Recognizing that sampling isn’t perfect
 As used in clinical research, the terms population and sample can be defined 

this way:

 ✓ Population: All individuals having a precisely defined set of characteris-
tics (for example: human, male, age 18–65, with Stage 3 lung cancer)

 ✓ Sample: A subset of a defined population, selected for experimental study

Any sample, no matter how carefully it is selected, is only an imperfect reflec-
tion of the population, due to the unavoidable occurrence of random sam-
pling fluctuations. Figure 3-2, which shows IQ scores of a random sample of 
100 subjects from the U.S. population, exhibits this characteristic. (IQ scores 
are standardized so that the average for the whole population is 100, with a 
standard deviation of 15.)

 

Figure 3-2: 
Distribution 

of IQ scores 
in a) the 

population, 
and b) a 
random 

sample of 
100 subjects 

from that 
population.

 
 Illustration by Wiley, Composition Services Graphics

The sample is distributed more or less like the population, but clearly it’s 
only an approximation to the true distribution. The mean and standard devia-
tion (I define those terms precisely in Chapter 8) of the sample are close to, 
but not exactly equal to, the mean and standard deviation of the population, 
and the histogram doesn’t have a perfect bell shape. These characteristics 
are always true of any random sample.

 Histograms are prepared from data you observe in your sample of subjects, 
and they describe how the values fluctuate in that sample. A histogram of an 
observed variable, prepared from a random sample of data, is an approxima-
tion to what the population distribution of that variable looks like.



37 Chapter 3: Getting Statistical: A Short Review of Basic Statistics

Digging into probability distributions
Samples differ from populations because of random fluctuations. Statisticians 
understand quantitatively how random fluctuations behave by develop-
ing mathematical equations, called probability distribution functions, that 
describe how likely it is that random fluctuations will exceed any given mag-
nitude. A probability distribution can be represented in several ways:

 ✓ As a mathematical equation that gives the chance that a fluctuation 
will be of a certain magnitude. Using calculus, this function can be 
 integrated — turned into another related function that tells the probabil-
ity that a fluctuation will be at least as large as a certain magnitude.

 ✓ As a graph of the distribution, which looks and works much like a histo-
gram of observed data.

 ✓ As a table of values telling how likely it is that random fluctuations will 
exceed a certain magnitude.

Over the years, hundreds of different probability distributions have been 
described, but most practical statistical work utilizes only a few of them. 
You encounter fewer than a dozen probability distributions in this book. In 
the following sections, I break down two types of distributions: those that 
describe fluctuations in your data and those that you encounter when per-
forming statistical tests.

Distributions that describe your data
Some distributions describe the random fluctuations you see in your data:

 ✓ Normal: The familiar, bell-shaped, normal distribution describes (at 
least approximately) an enormous number of variables you encounter.

 ✓ Log-normal: The skewed, log-normal distribution describes many labora-
tory results (enzymes and antibody titers, for example), lengths of hospital 
stays, and related things like costs, utilization of tests, drugs, and so forth.

 ✓ Binomial: The binomial distribution describes proportions, such as the 
fraction of subjects responding to treatment.

 ✓ Poisson: The Poisson distribution describes the number of occurrences 
of sporadic random events, such as clicks in a gamma radiation counter 
or deaths during some period of time.

Chapter 25 describes these and other distribution functions in more detail, 
and you encounter them throughout this book.
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Distributions that come up during statistical testing
Some frequency distributions don’t describe fluctuations in observed data, 
but rather describe fluctuations in numbers that you calculate as part of 
a statistical test (described in the later section “Honing In on Hypothesis 
Testing”). These distributions include the Student t, chi-square, and Fisher 
F distributions (see Chapter 25), which are used to obtain the p values (see 
the later section “Getting the language down” for a definition of p values) that 
result from the tests.

Introducing Statistical Inference
Statistical inference is the drawing (that is, inferring) of conclusions about 
a population based on what you see in a sample from that population. In 
keeping with the idea that statisticians understand how random fluctuations 
behave, we can say that statistical inference theory is concerned with how 
we can extract what’s real in our data, despite the unavoidable random noise 
that’s always present due to sampling fluctuations or measurement errors. 
This very broad area of statistical theory is usually subdivided into two 
topics: statistical estimation theory and statistical decision theory.

Statistical estimation theory
Statistical estimation theory focuses on the accuracy and precision of things 
that you estimate, measure, count, or calculate. It gives you ways to indicate 
how precise your measurements are and to calculate the range that’s likely 
to include the true value. The following sections provide the fundamentals of 
this theory.

Accuracy and precision
 Whenever you estimate or measure anything, your estimated or measured value 

can differ from the truth in two ways — it can be inaccurate, imprecise, or both.

 ✓ Accuracy refers to how close your measurement tends to come to the true 
value, without being systematically biased in one direction or another.

 ✓ Precision refers to how close a bunch of replicate measurements come 
to each other — that is, how reproducible they are.

Figure 3-3 shows four shooting targets with a bunch of bullet holes from 
repeated rifle shots. These targets illustrate the distinction between accuracy 
and precision — two terms that describe different kinds of errors that can 
occur when sampling or measuring something (or, in this case, when shoot-
ing at a target).
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Figure 3-3: 
The dif-
ference 

between 
accu-

racy and 
 precision.

 
 Illustration by Wiley, Composition Services Graphics

You see the following in Figure 3-3:

 ✓ The upper-left target is what most people would hope to achieve — 
the shots all cluster together (good precision), and they center on the 
bull’s-eye (good accuracy).

 ✓ The upper-right target shows that the shots are all very consistent with 
each other (good precision), so we know that the shooter was very steady 
(with no large random perturbations from one shot to the next), and any 
other random effects must have also been quite small. But the shots were 
all consistently high and to the right (poor accuracy). Perhaps the gun 
sight was misaligned or the shooter didn’t know how to use it properly. A 
systematic error occurred somewhere in the aiming and shooting process.

 ✓ The lower-left target indicates that the shooter wasn’t very consistent 
from one shot to another (he had poor precision). Perhaps he was 
unsteady in holding the rifle; perhaps he breathed differently for each 
shot; perhaps the bullets were not all properly shaped, and had differ-
ent aerodynamics; or any number of other random differences may have 
had an effect from one shot to the next. About the only good thing you 
can say about this shooter is that at least he tended to be more or less 
centered around the bull’s-eye — the shots don’t show any tendency to 
be consistently high or low, or consistently to the left or right of center. 
There’s no evidence of systematic error (or inaccuracy) in his shooting.

 ✓ The lower-right target shows the worst kind of shooting — the shots 
are not closely clustered (poor precision) and they seem to show a 
tendency to be high and to the right (poor accuracy). Both random and 
systematic errors are prominent in this shooter’s shooting.



40 Part I: Beginning with Biostatistics Basics 

Sampling distributions and standard errors
 The standard error (abbreviated SE) is one way to indicate how precise your 

estimate or measurement of something is. The SE tells you how much the esti-
mate or measured value might vary if you were to repeat the experiment or 
the measurement many times, using a different random sample from the same 
population each time and recording the value you obtained each time. This 
collection of numbers would have a spread of values, forming what is called 
the sampling distribution for that variable. The SE is a measure of the width of 
the sampling distribution, as described in Chapter 9.

Fortunately, you don’t have to repeat the entire experiment a large number 
of times to calculate the SE. You can usually estimate the SE using data from 
a single experiment. In Chapter 9, I describe how to calculate the standard 
errors for means, proportions, event rates, regression coefficients, and other 
quantities you measure, count, or calculate.

Confidence intervals
Confidence intervals provide another way to indicate the precision of an 
estimate or measurement of something. A confidence interval (CI) around an 
estimated value is the range in which you have a certain degree of certitude, 
called the confidence level (CL), that the true value for that variable lies. If cal-
culated properly, your quoted confidence interval should encompass the true 
value a percentage of the time at least equal to the quoted confidence level.

Suppose you treat 100 randomly selected migraine headache sufferers with 
a new drug, and you find that 80 of them respond to the treatment (accord-
ing to the response criteria you have established). Your observed response 
rate is 80 percent, but how precise is this observed rate? You can calculate 
that the 95 percent confidence interval for this 80 percent response rate goes 
from 70.8 percent to 87.3 percent. Those two numbers are called the lower 
and upper 95 percent confidence limits around the observed response rate. If 
you claim that the true response rate (in the population of migraine sufferers 
that you drew your sample from) lies between 70.8 percent and 87.3 percent, 
there’s a 95 percent chance that that claim is correct.

How did I get those confidence limits? In Chapter 10, I describe how to calcu-
late confidence intervals around means, proportions, event rates, regression 
coefficients, and other quantities you measure, count, or calculate.

Statistical decision theory
Statistical decision theory is perhaps the largest branch of statistics. It encom-
passes all the famous (and many not-so-famous) significance tests — Student 
t tests (see Chapter 12), chi-square tests (see Chapter 13), analysis of vari-
ance (ANOVA; see Chapter 12), Pearson correlation tests (see Chapter 17), 
Wilcoxon and Mann-Whitney tests (see Chapter 12), and on and on.
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 In its most basic form, statistical decision theory deals with determining 
whether or not some real effect is present in your data. I use the word effect 
throughout this book, and it can refer to different things in different circum-
stances. Examples of effects include the following:

 ✓ The average value of something may be different in one group com-
pared to another. For example, males may have higher hemoglobin 
values, on average, than females; the effect of gender on hemoglobin can 
be quantified by the difference in mean hemoglobin between males and 
females. Or subjects treated with a drug may have a higher recovery rate 
than subjects given a placebo; the effect size could be expressed as the 
difference in recovery rate (drug minus placebo) or by the ratio of the 
odds of recovery for the drug relative to the placebo (the odds ratio).

 ✓ The average value of something may be different from zero (or from 
some other specified value). For example, the average change in body 
weight over 12 weeks in a group of subjects undergoing physical therapy 
may be different from zero.

 ✓ Two numerical variables may be associated (also called correlated). 
For example, if obesity is associated with hypertension, then body mass 
index may be correlated with systolic blood pressure. This effect is 
often quantified by the Pearson correlation coefficient.

Homing In on Hypothesis Testing
The theory of statistical hypothesis testing was developed in the early 20th 
century and has been the mainstay of practical statistics ever since. It was 
designed to apply the scientific method to situations involving data with 
random fluctuations (and almost all real-world data has random fluctuations). 
In the following sections, I list a few terms commonly used in hypothesis test-
ing; explain the steps, results, and possible errors of testing; and describe the 
relationships between power, sample size, and effect size in testing.

Getting the language down
Here are some of the most common terms used in hypothesis testing:

 ✓ Null hypothesis (abbreviated H0): The assertion that any apparent 
effect you see in your data does not reflect any real effect in the popula-
tion, but is merely the result of random fluctuations.

 ✓ Alternate hypothesis (abbreviated H1 or HAlt): The assertion that there 
really is some real effect in your data, over and above whatever is attrib-
utable to random fluctuations.
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 ✓ Significance test: A calculation designed to determine whether H0 can 
reasonably explain what you see in your data.

 ✓ Significance: The conclusion that random fluctuations alone can’t 
account for the size of the effect you observe in your data, so H0 must be 
false, and you accept HAlt.

 ✓ Statistic: A number that you obtain or calculate from your data.

 ✓ Test statistic: A number, calculated from your data, usually for the pur-
pose of testing H0. It’s often — but not always — calculated as the ratio 
of a number that measures the size of the effect (the signal) divided by a 
number that measures the size of the random fluctuations (the noise).

 ✓ p value: The probability that random fluctuations alone in the absence 
of any real effect (in the population) can produce an observed effect at 
least as large as what you observe in your sample. The p value is the 
probability of random fluctuations making the test statistic at least as 
large as what you calculate from your data (or, more precisely, at least 
as far away from H0 in the direction of HAlt).

 ✓ Type I error: Getting a significant result when, in fact, no effect is present.

 ✓ Alpha: The probability of making a Type I error.

 ✓ Type II error: Failing to get a significant result when, in fact, some effect 
really is present.

 ✓ Beta: The probability of making a Type II error.

 ✓ Power: The probability of getting a significant result when some effect is 
really present.

Testing for significance
 All the famous statistical significance tests (Student t, chi-square, ANOVA, and 

so on) work on the same general principle — they evaluate the size of appar-
ent effect you see in your data against the size of the random fluctuations 
present in your data. I describe individual statistical tests throughout this 
book — t tests and ANOVAs in Chapter 12, chi-square and Fisher Exact tests in 
Chapter 13, correlation tests in Chapter 17, and so on. But here I describe the 
general steps that underlie all the common statistical tests of significance.

 1. Boil your raw data down into a single number, called a test statistic.

  Each test has its own formula, but in general, the test statistic repre-
sents the magnitude of the effect you’re looking for relative to the magni-
tude of the random noise in your data. For example, the test statistic for 
the unpaired Student t test for comparing means between two groups is 
calculated as a fraction:
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  The numerator is a measure of the effect you’re looking for — the differ-
ence between the two groups. And the denominator is a measure of the 
random noise in your data — the spread of values within each group. 
The larger the observed effect is, relative to the amount of random scat-
ter in your data, the larger the Student t statistic will be.

 2. Determine how likely (or unlikely) it is for random fluctuations to pro-
duce a test statistic as large as the one you actually got from your data.

  The mathematicians have done the hard work; they’ve developed formulas 
(really complicated ones) that describe how much the test statistic bounces 
around if only random fluctuations are present (that is, if H0 is true).

Understanding the meaning of “p value” 
as the result of a test
The end result of a statistical significance test is a p value, which represents the 
probability that random fluctuations alone could have generated results that 
differed from the null hypothesis (H0), in the direction of the alternate hypoth-
esis (HAlt), by at least as much as what you observed in your data.

If this probability is too small, then H0 can no longer explain your results, and 
you’re justified in rejecting it and accepting HAlt, which says that some real 
effect is present. You can say that the effect seen in your data is statistically 
significant.

 How small is too small for a p value? This determination is arbitrary; it 
depends on how much of a risk you’re willing to take of being fooled by 
random fluctuations (that is, of making a Type I error). Over the years, the 
value of 0.05 has become accepted as a reasonable criterion for declaring 
 significance. If you adopt the criterion that p must be less than or equal to 0.05 
to declare significance, then you’ll keep the chance of making a Type I error to 
no more than 5 percent.

Examining Type I and Type II errors
The outcome of a statistical test is a decision to either accept or reject H0 in 
favor of HAlt. Because H0 pertains to the population, it’s either true or false for 
the population you’re sampling from. You may never know what that truth is, 
but an objective truth is out there nonetheless.
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The truth can be one of two things, and your conclusion is one of two things, 
so four different situations are possible; these are often portrayed in a four-
fold table, as shown in Figure 3-4 (Chapter 14 has details on these tables).

 

Figure 3-4: 
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 Here are the four things that can happen when you run a statistical signifi-
cance test on your data (using an example of testing a drug for efficacy):

 ✓ You can get a nonsignificant result when there is truly no effect present. 
This is correct — you don’t want to claim that a drug works if it really 
doesn’t. (See the upper-left corner of the outlined box in Figure 3-4.)

 ✓ You can get a significant result when there truly is some effect present. 
This is correct — you do want to claim that a drug works when it really 
does. (See the lower-right corner of the outlined box in Figure 3-4.)

 ✓ You can get a significant result when there’s truly no effect present. 
This is a Type I error — you’ve been tricked by random fluctuations that 
made the drug look effective. (See the lower-left corner of the outlined 
box in Figure 3-4.) Your company will invest millions of dollars into the 
further development of a drug that will eventually be shown to be worth-
less. Statisticians use the Greek letter alpha (α) to represent the prob-
ability of making a Type I error.

 ✓ You can get a nonsignificant result when there truly is an effect pres-
ent. This is a Type II error (see the upper-right corner of the outlined 
box in Figure 3-4) — you’ve failed to see that the drug really works, per-
haps because the effect was obscured by the random noise in the data. 
Further development will be halted, and the miracle drug of the century 
will be consigned to the scrap heap, along with the Nobel prize you’ll 
never get. Statisticians use the Greek letter beta (β) to represent the 
probability of making a Type II error.
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 Limiting your chance of making a Type I error (falsely claiming significance) is 
very easy. If you don’t want to make a Type I error more than 5 percent of the 
time, don’t declare significance unless the p value is less than 0.05. That’s 
called testing at the 0.05 alpha level. If you’re willing to make a Type I error 10 
percent of the time, use p < 0.10 as your criterion for significance. If you’re ter-
rified of Type I errors, use p < 0.000001 as your criterion for significance, and 
you won’t falsely claim significance more than one time in a million.

Why not use a small alpha level (like p < 0.000001) for your significance test-
ing? Because then you’ll almost never get significance, even if an effect really 
is present. Researchers don’t like to go through life never making any dis-
coveries. If a drug really is effective, you want to get a significant result when 
you test it. You need to strike a balance between Type I and Type II errors — 
between the alpha and beta error rates. If you make alpha too small, beta 
will become too large, and vice versa. Is there any way to keep both types of 
errors small? There is, and that’s what I describe next.

Grasping the power of a test
 The power of a statistical test is the chance that it will come out statistically sig-

nificant when it should — that is, when the alternative hypothesis is really true. 
Power is a probability and is very often expressed as a percentage. Beta is the 
chance of getting a nonsignificant result when the alternative hypothesis is true, 
so you see that power and beta are related mathematically: Power = 1 – beta.

The power of any statistical test depends on several factors:

 ✓ The alpha level you’ve established for the test — that is, the chance 
you’re willing to accept of making a Type I error

 ✓ The actual magnitude of the effect in the population, relative to the 
amount of noise in the data

 ✓ The size of your sample

Power, sample size, effect size relative to noise, and alpha level can’t all be 
varied independently; they’re interrelated — connected and constrained by a 
mathematical relationship involving the four quantities.

This relationship is often very complicated, and sometimes it can’t be written 
down explicitly as a formula, but it does exist. For any particular type of test, 
you can (at least in theory) determine any one of the four quantities if you know 
the other three. So there are four different ways to do power calculations, with 
each way calculating one of the four quantities from arbitrarily specified values 
of the other three. (I have more to say about this in Chapter 5, where I describe 
practical issues that arise during the design of research studies.) In the follow-
ing sections, I describe the relationships between power, sample size, and effect 
size, and I briefly note how you can perform power calculations.
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Power, sample size, and effect size relationships
 The alpha level of a statistical test is usually set to 0.05, unless there are spe-

cial considerations, which I describe in Chapter 5. After you specify the value 
of alpha, you can display the relationship between the other three variables 
(power, sample size, and effect size) in several ways. The next three graphs 
show these relationships for the Student t test; graphs for other statistical 
tests are generally similar to these:

 ✓ Power versus sample size, for various effect sizes: For all statistical 
tests, power always increases as the sample size increases, if other things 
(such as alpha level and effect size) are held constant. This relationship 
is illustrated in Figure 3-5. “Eff” is the effect size — the between-group 
difference divided by the within-group standard deviation.

  Very small samples very seldom produce significant results unless the 
effect size is very large. Conversely, extremely large samples (many 
thousands of subjects) are almost always significant unless the effect 
size is near zero. In epidemiological studies, which often involve 
hundreds of thousands of subjects, statistical tests tend to produce 
extremely small (and therefore extremely significant) p values, even 
when the effect size is so small that it’s of no practical importance.
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 ✓ Power versus effect size, for various sample sizes: For all statistical 
tests, power always increases as the effect size increases, if other things 
(such as alpha level and sample size) are held constant. This relationship 
is illustrated in Figure 3-6. “N” is the number of subjects in each group.

  For very large effect sizes, the power approaches 100 percent. For very 
small effect sizes, you might think the power of the test would approach 



47 Chapter 3: Getting Statistical: A Short Review of Basic Statistics

zero, but you can see from Figure 3-6 that it doesn’t go down all the way 
to zero; it actually approaches the alpha level of the test. (Keep in mind 
that the alpha level of the test is the probability of the test producing a 
significant result when no effect is truly present.)

 

Figure 3-6: 
The power 

of a statisti-
cal test 

increases 
as the 

effect size 
increases.

 
 Illustration by Wiley, Composition Services Graphics

 ✓ Sample size versus effect size, for various values of power: For all statis-
tical tests, sample size and effect size are inversely related, if other things 
(such as alpha level and power) are held constant. Small effects can be 
detected only with large samples; large effects can often be detected with 
small samples. This relationship is illustrated in Figure 3-7.

 

Figure 3-7: 
Smaller 
effects 

need larger 
samples.

 
 Illustration by Wiley, Composition Services Graphics
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  This inverse relationship between sample size and effect size takes on a 
very simple mathematical form (at least to a good approximation): The 
required sample size is inversely proportional to the square of the effect 
size that can be detected. Or, equivalently, the detectable effect size is 
inversely proportional to the square root of the sample size. So, quadru-
pling your sample size allows you to detect effect sizes only one-half as 
large.

How to do power calculations
 Power calculations are a crucial part of the design of any research project. 

You don’t want your study to be underpowered (with a high risk of missing 
real effects) or overpowered (larger, costlier, and more time-consuming than 
necessary). You need to provide a power/sample-size analysis for any research 
proposal you submit for funding or any protocol you submit to a review board 
for approval. You can perform power calculations in several ways:

 ✓ Computer software: The larger statistics packages (such as SPSS, SAS, 
and R) provide a wide range of power calculations — see Chapter 4 for 
more about these packages. There are also programs specially designed 
for this purpose (nQuery, StatExact, Power and Precision, PS-Power & 
Sample Size, and Gpower, for instance).

 ✓ Web pages: Many of the more common power calculations can be per-
formed online using web-based calculators. A large collection of these 
can be found at StatPages.info.

 ✓ Hand-held devices: Apps for the more common power calculations are 
available for most tablets and smartphones.

 ✓ Printed charts and tables: You can find charts and tables in textbooks 
(including this one; see Chapter 12 and this book’s Cheat Sheet at www.
dummies.com/cheatsheet/biostatistics). These are ideal for 
quick and dirty calculations.

 ✓ Rules of thumb: Some approximate sample-size calculations are simple 
enough to do on a scrap of paper or even in your head! You find some of 
these in Chapter 26 and on the Cheat Sheet: Go to www.dummies.com/
cheatsheet/biostatistics.

Going Outside the Norm with 
Nonparametric Statistics

All statistical tests are derived on the basis of some assumptions about your 
data, and most of the classical significance tests (such as Student t tests, 
analysis of variance, and regression tests) assume that your data is distributed 

http://StatPages.info
http://www.dummies.com/cheatsheet/biostatistics
http://www.dummies.com/cheatsheet/biostatistics
http://www.dummies.com/cheatsheet/biostatistics
http://www.dummies.com/cheatsheet/biostatistics
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according to some classical frequency distribution (most commonly the normal 
distribution; see Chapter 25). Because the classic distribution functions are 
all written as mathematical expressions involving parameters (like means and 
standard deviation), they’re called parametric distribution functions, and tests 
that assume your data conforms to a parametric distribution function are called 
parametric tests. Because the normal distribution is the most common statisti-
cal distribution, the term parametric test is most often used to mean a test that 
assumes normally distributed data.

But sometimes your data isn’t parametric. For example, you may not want to 
assume that your data is normally distributed because it may be very notice-
ably skewed, as shown in Figure 3-8a.

Sometimes, you may be able to perform some kind of transformation of your 
data to make it more normally distributed. For example, many variables that 
have a skewed distribution can be turned into normally distributed numbers 
by taking logarithms, as shown in Figure 3-8b. If, by trial and error, you can 
find some kind of transformation that normalizes your data, you can run the 
classical tests on the transformed data. (See Chapter 8.)

 

Figure 3-8: 
Skewed 
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turned into 
normally 

distributed 
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rithms.

 
 Illustration by Wiley, Composition Services Graphics

But sometimes your data is stubbornly abnormal, and you can’t use the para-
metric tests. Fortunately, statisticians have developed special tests that don’t 
assume normally distributed data; these are (not surprisingly) called nonpara-
metric tests. Most of the common classic parametric tests have nonparametric 
counterparts. As you may expect, the most widely known and commonly used 
nonparametric tests are those that correspond to the most widely known and 
commonly used classical tests. Some of these are shown in Table 3-2.
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Table 3-2 Nonparametric Counterparts of Classic Tests
Classic Parametric Test Nonparametric Equivalent
One-group or paired Student t test 
(see Chapter 12)

Sign test; Wilcoxon signed-ranks test

Two-group Student t test (see 
Chapter 12)

Wilcoxon sum-of-ranks test; 
 Mann-Whitney U test

One-way ANOVA (see Chapter 12) Kruskal-Wallis test
Pearson Correlation test (see Chapter 17) Spearman Rank Correlation test

Most nonparametric tests involve first sorting your data values, from lowest 
to highest, and recording the rank of each measurement (the lowest value 
has a rank of 1, the next highest value a rank of 2, and so on). All subsequent 
calculations are done with these ranks rather than with the actual data 
values.

Although nonparametric tests don’t assume normality, they do make cer-
tain assumptions about your data. For example, many nonparametric tests 
assume that you don’t have any tied values in your data set (in other words, 
no two subjects have exactly the same values). Most parametric tests incor-
porate adjustments for the presence of ties, but this weakens the test and 
makes the results nonexact.

 Even in descriptive statistics, the common parameters have nonparametric 
counterparts. Although means and standard deviations can be calculated for 
any set of numbers, they’re most useful for summarizing data when the num-
bers are normally distributed. When you don’t know how the numbers are dis-
tributed, medians and quartiles are much more useful as measures of central 
tendency and dispersion (see Chapter 8 for details).



Chapter 4

Counting on Statistical Software
In This Chapter
▶ Surveying statistical software (commercial and free) for personal computers
▶ Performing statistics on handheld devices (like calculators, tablets, and smartphones)
▶ Doing statistical calculations on the web
▶ Using paper calculators (yes, there are such things!)

Y 
ou may be surprised that throughout this book, I tell you not to do sta-
tistical calculations by hand. With computing power so readily available 

and with such an abundance of statistical software at your disposal — much 
of it free — there’s just no good reason to put yourself through the misery of 
mind-numbing calculations and waste your precious time only to (almost cer-
tainly) come up with the wrong answer because of some inadvertent error in 
arithmetic. Just as you would never seriously consider using long division to 
calculate your car’s miles per gallon, you should never consider calculating a 
correlation coefficient, a t test, or a chi-square test by hand.

In this chapter, I describe some of the many alternatives available to you for 
performing statistical calculations and analyses. I group them according to 
the devices on which they run:

 ✓ Personal computers

 ✓ Calculators and mobile devices

 ✓ The web

 ✓ Paper

Desk Job: Personal Computer Software
The first statistical software was developed for the mainframes and minicom-
puters of the 1960s and 1970s. As personal computers became popular, many 
of these programs were adapted to run on them. And many more statistical 
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programs were developed from scratch to take advantage of the user-friendly 
graphical user interface (GUI) of Macintosh and Windows computers, includ-
ing menus, drag-and-drop capability, the point-and-click feature of the mouse, 
and so forth. More than a hundred of these packages are listed on this web 
page: StatPages.info/javasta2.html.

I describe a few personal computer software products in the following sec-
tions. They come in two categories: commercial (the ones you pay for)  
and free.

Most statistical packages run on Windows; some also run on Mac and Unix 
or Linux systems. Any Windows package will run on a Mac that has Windows 
emulation capability (as most of the modern Macs do).

Checking out commercial software
Commercial statistical programs usually provide a wide range of capabili-
ties, personal user support (such as a phone help-line), and some reason to 
believe (or at least to hope) that the software will be around and supported 
for many years to come.

Prices vary widely, and the array of pricing options may be bewildering, with 
single-user and site licenses, nonprofit and academic discounts, one-year and 
permanent licenses, “basic” and “pro” versions, and so on. Therefore I make 
only very general statements about relative prices for the commercial pack-
ages; check the vendors’ websites for details.

Many companies let you download a demo version of their software that’s 
limited in some way — some features may be disabled, the maximum number 
of cases or variables may be limited, or the software may run for only a cer-
tain number of days.

 Demo versions are a great way to see whether a software package is easy to 
use and meets your needs before you shell out the cash for a full version.

In the following sections, I discuss several commercial software programs for 
you to consider, starting with the biggest, most general, most powerful, and 
most expensive.

SAS
SAS is one of the most comprehensive statistical packages on the market. It’s 
widely used in all branches of science and is especially pervasive in the phar-
maceutical industry. The current versions run on Windows and some Linux 
systems.

http://statpages.info/javasta2.html
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SAS is designed to be run by user-written programs. A GUI module makes the 
programming task easier, but SAS isn’t designed like a typical personal com-
puter program. It doesn’t use the familiar “document” paradigm that almost 
all other personal computer software uses. For example, you don’t create a 
new data file by going to a File menu and selecting New, nor do you open an 
existing data file by going to File and selecting Open. Most users need SAS 
training in order to use the program productively.

SAS is large-scale software, designed for large-scale operations. It comes with 
a wide variety of analyses built in, and its programming language lets you 
create modules to perform other, less-common kinds of analyses. Its scope 
has grown beyond just the statistical analysis of data; SAS is now a complete 
data acquisition, validation, management, analysis, and presentation system.

SAS is also expensive — depending on the optional modules you want to use, 
it can cost over $1,000 per year. If your organization has a site license, you 
may be able to use SAS for relatively little or no money for as long as you’re 
affiliated with that organization.

 For most readers of this book, SAS is likely to be overkill, but if it’s available 
at your school or organization, it may be worth your time to learn how to use 
it (especially if you plan to work in pharmaceutical research). See www.sas.
com for more details about this program.

SPSS
SPSS is another comprehensive program that can perform all the analyses 
you’re likely to need while remaining quite intuitive and user-friendly. You 
create and edit data files the same way you’d create and edit word-processing 
documents and spreadsheets — using the File menu’s commands: New, Save, 
Open, and so forth. SPSS contains a programming language that can automate 
repetitive tasks and perform calculations and analyses beyond those built into 
the software. SPSS runs on Windows, Macintosh, and some Linux systems.

SPSS pricing is complicated. Depending on the modules you want to use, it 
can cost many hundreds of dollars per year. Check out www.spss.com for 
details on this software.

GraphPad Prism and InStat
Unlike most commercial stats packages, these two programs were designed 
by and for scientists, not by and for statisticians. GraphPad Prism focuses on 
the needs of biological and clinical researchers in laboratory settings, and it’s 
quite capable of handling non-laboratory research as well. It offers a power-
ful combination of parametric and nonparametric tests, extensive regression 

http://www.sas.com
http://www.sas.com
http://www.spss.com
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and curve-fitting (including nonlinear regression), survival analysis, and sci-
entific graphing. It runs on Windows and Mac systems.

GraphPad InStat carries the “scientist, rather than statistician” theme even 
further, with a user-friendly interface that guides you through the process of 
selecting the right test based on the structure of your experiment, verifying 
that your data meets the assumptions of the test, and interpreting all parts of 
the output in “plain English” with a minimum of statistical jargon. It doesn’t 
have all the capabilities of Prism; its emphasis is on ease of use. If you don’t 
want to have to become a statistician but just want to get your data analyzed 
properly with minimal fuss, and without a long learning process, check out 
InStat. It runs on Windows and some Mac systems.

These programs are reasonably priced; academic and student discounts are 
available, and you can download trial versions to evaluate. They’re definitely 
worth a close look; head to www.graphpad.com for details.

Excel and other spreadsheet programs
 You can use Excel (and similar spreadsheet programs) to store, summarize, 

and analyze your raw data and to prepare graphs from your analysis. But 
using Excel for data storage and analysis has been controversial. Some have 
argued that Excel is too unstructured to serve as a respectable database (you 
can put anything into any cell, with no constraints on data types, ranges, and 
so forth), and you can easily destroy all or parts of your database (by sort-
ing just some columns and not others). Others have said that Excel’s built-in 
mathematical and statistical functions are inaccurate and unreliable. Although 
some of those criticisms were valid years ago, today’s Excel is much improved 
and is satisfactory for most purposes.

Excel has built-in functions for summarizing data (means, standard devia-
tions, medians, and so on) for the common probability distribution functions 
and their inverses (normal, Student t, Fisher F, and chi-square) and for per-
forming Student t tests and calculating correlation coefficients and simple 
linear regression (slope and intercept). If you install the optional Analysis 
add-in packages provided with Excel, Excel can do more extensive analyses, 
such as ANOVA and multivariate regression.

Excel runs on both Windows and Macintosh. You can buy it as part of the 
Microsoft Office suite, and prices vary depending on the version of the suite. 
For more information, see office.microsoft.com/en-us/excel.

Some other packages to consider
Among the many other commercial statistics packages, you may want to look 
into one or more of these:

http://www.graphpad.com
http://office.microsoft.com/en-us/excel
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 ✓ Stata: This package provides a broad range of capabilities through user-
written routines. It originally used a command-line interface, but recent 
versions have implemented a graphical shell. It runs on Windows, Mac, 
Unix, and Linux systems.

 ✓ S Plus: Based on the S programming language (similar to the R language 
I describe later in this chapter), S Plus provides an extensive graphical 
user interface. It is highly extensible through user-written routines for 
almost every imaginable statistical procedure.

 ✓ Minitab: With an emphasis on industrial quality control, this package 
contains many of the capabilities you need for biological research. It 
runs on Windows systems.

Focusing on free software
Over the years, many dedicated and talented people have developed statisti-
cal software packages and made them freely available worldwide. Although 
some of these programs may not have the scope of coverage or the polish 
of the commercial packages that I describe earlier in this chapter, they’re 
high-quality programs that can handle most, if not all, of what you probably 
need to do. The following sections describe several general-purpose statisti-
cal packages that perform a wide variety of analyses, an Excel add-in module, 
and two special-purpose packages that perform power and sample-size 
 calculations.

OpenStat and LazStats
OpenStat, developed by Dr. Bill Miller, is an excellent free program that can 
perform almost all the statistical analyses described in this book. It has a 
very friendly user interface, with menus and dialogs that resemble those of 
SPSS. Dr. Miller provides several excellent manuals and textbooks that sup-
port OpenStat, and users can e-mail Dr. Miller directly to get answers to ques-
tions or problems they may have. OpenStat runs on Windows systems.

An alternative is LazStats, also from Dr. Miller, which has many of the 
same capabilities as OpenStat but can run directly (without emulation) on 
Macintosh and at least some Linux systems.

 Fun fact: The “Laz” in “LazStats” doesn’t stand for lazy; it stands for the free 
Lazarus compiler that was used to create the software for Mac and Linux as 
well as Windows.

Get the scoop on both programs at www.statprograms4U.com.

http://www.statprograms4u.com
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R
R is a free statistical programming and graphical system that runs on 
Windows, Macintosh, and Linux systems. It’s one of the most powerful com-
puting software packages available, with capabilities surpassing those of 
many commercial packages. It has built-in support for every kind of statisti-
cal analysis described in this book, and many hundreds of add-on packages 
(also free) extend its capabilities into every area of statistics. You can gener-
ate almost every imaginable kind of graph with complete control over every 
detail (all the technical graphs in this book were made with R).

 But R is not easy to use. Its user interface is very rudimentary, and all analyses 
have to be specified as commands or statements in R’s programming language 
(which is very similar to the S language used by the commercial S-Plus pack-
age). It may take you awhile to become proficient in R, but once you do, you’ll 
have almost unlimited capability to carry out any kind of statistical analysis 
you can think up.

Check out www.r-project.org for more information.

Epi Info
Epi Info, developed by the Centers for Disease Control, was designed to be a 
fairly complete system to acquire, manage, analyze, and display the results 
of epidemiological research, although it’s useful in all kinds of biostatistical 
research. It contains modules for creating survey forms, collecting data, and 
performing a wide range of analyses: t tests, ANOVA, nonparametric statis-
tics, cross tabulations, logistic regression (conditional and unconditional), 
survival analysis, and analysis of complex survey data. Epi Info runs under 
Windows. Find the details on this program at wwwn.cdc.gov/epiinfo.

PopTools
PopTools is a free add-in for Excel, written by Greg Hood, an ecologist 
from Australia. It provides some impressive extensions to Excel — several 
statistical tests (ANOVA, chi-square, and a few others), a variety of matrix 
operations, functions to generate random numbers from many different dis-
tributions, programs that let you easily perform several kinds of simulations 
(bootstrapping, Monte-Carlo analysis, and so on), and several handy features 
for checking the quality of your data. Definitely worth looking at if you’re 
using Excel on a Windows PC (unfortunately, it doesn’t work with Mac Excel). 
Discover more at poptools.org.

PS (Power and Sample Size Calculation) and G*Power
The PS program, from W.D. Dupont and W.D. Plummer of Vanderbilt 
University, does a few things, and it does them very well. It performs power 
and sample-size calculations for Student t tests, chi-square tests, several 

http://www.r-project.org
http://wwwn.cdc.gov/epiinfo
http://poptools.org
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kinds of linear regression, and survival analysis. It has a simple, intuitive user 
interface and a good help feature, and it provides a verbal description of the 
analysis (describing the assumptions and interpreting the results) that you 
can copy and paste into a research proposal or grant application. You can 
create graphs of power versus sample size or effect size for various scenarios 
and tweak them until they’re of publication quality. For more info, check out 
biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize.

Another excellent power/sample-size program is G*Power. This program 
handles many more types of statistical analyses than PS, such as multi-factor 
ANOVAs, ANCOVAs, multiple regression, logistic regression, Poisson regres-
sion, and several nonparametric tests. Like PS, it also provides excellent 
graphics. See www.psycho.uni-duesseldorf.de/abteilungen/aap/
gpower3 for details.

 G*Power can be more intimidating for the casual user than PS, but because 
both products are free, you should download and install both of them.

On the Go: Calculators  
and Mobile Devices

Over the years, as computing has moved from mainframes to minicomputers 
to personal computers to hand-held devices (calculators, tablets, and smart-
phones), statistical software has undergone a similar migration. Today you 
can find statistical software for just about every intelligent (that is, computer-
ized) device there is (with the possible exception of smart toasters).

Scientific and programmable calculators
Many scientific calculators claim to perform statistical calculations, although 
they may entail no more than calculating the mean and standard deviation of 
a set of numbers that you key in. Some of the newer scientific calculators also 
handle correlation and simple linear regression analysis.

Programmable calculators like the TI-83 and HP 35s aren’t limited to the cal-
culations that are hard-wired into the device; they let you define your own 
special-purpose calculations, and therefore can perform almost any computa-
tion for which a suitable program has been written.

http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3
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Mobile devices
Mobile devices (smartphones, tablets, and similar devices) are rapidly 
becoming the “computer of choice” for many people (according to Mashable.
com, 6 billion cellphones were active worldwide in 2011). Indeed, for tasks 
like e-mail and web browsing, many people find them to be more convenient 
than desktop or even laptop computers. Perhaps the main reason for their 
incredible popularity is that they can run an astounding number of custom-
written applications, or apps.

Statistics-related apps are available for all the major mobile platforms — 
Apple iOS, Android, Windows Mobile, and BlackBerry. These range from 
simple calculators that can do elementary statistical functions (such as 
means, standard deviations, and some probability functions) to apps that can 
do fairly sophisticated statistical analyses (such as ANOVAs, multiple regres-
sion, and so forth). Prices for these apps range from zero to several hundred 
dollars. One example is the free StatiCal (short for Statistical Calculator) app 
for Android systems, which can evaluate the common probability functions 
and their inverses; calculate confidence intervals; and perform t tests, simple 
ANOVAs, chi-square tests, and simple correlation and regression analyses.

 As of this writing, a tablet or cellphone isn’t the ideal platform for maintaining 
large data files, but it can be very handy for quick calculations on summary 
data where you need to enter only a few numbers (like chi-square tests on 
cross-tab tables, or power calculations).

 The mobile environment is changing so rapidly that I’m reluctant to recom-
mend specific apps. Go to the “app store” for your particular device (for exam-
ple, Apple’s iTunes App Store or Android’s Play Store), and search using terms 
like statistics, statistical, anova, correlation, and so on.

Gone Surfin’: Web-Based Software
I define a web-based system as one that requires only that your device have a 
fairly modern web browser (like Microsoft’s Internet Explorer, Mozilla Firefox, 
Opera, Google Chrome, or Apple’s Safari) with JavaScript. All modern smart-
phones and tablets (iPhone, iPad, Android, and Windows) meet this criterion. 
Properly written web-based software is platform-independent — it doesn’t 
care whether you’re running a PC with Windows, a Macintosh, a computer 
with Linux, an iPhone, an iPad, or an Android phone or tablet. No special soft-
ware has to be downloaded or installed on your device.
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I define a cloud-based system as one in which the software and your data files 
(if any) are stored on servers in the cloud (that is, somewhere on the Internet, 
and you don’t care where). Cloud-based systems offer the prospect of letting 
you access your data, in its most up-to-date form, from any device, anywhere. 
The ideal web-based/cloud-based system would require only a browser, so it 
could be accessed from your personal computer, tablet, or smartphone. I’m 
not aware of any systems currently available that provide all of these capa-
bilities, but they may be coming soon.

 Less ambitious than a complete web-based statistics package is a web page 
that can do one specific statistical calculation or analysis using data that 
you enter into the page. Many such calculating pages exist, and the website 
StatPages.info lists hundreds of them, organized by type of calculation: 
descriptive statistics, single-group tests, confidence intervals, two-group 
comparisons, ANOVAs, cross-tab chi-square tests, correlation and regression 
analysis, power calculations, and more.

Taken together, all these pages can be thought of as a free, multiplatform, 
cloud-based statistical software package. But because they’ve been written 
by many different people, they don’t have a consistent look and feel, they 
don’t exchange data with each other, they don’t manage stored data files, 
and (like anything on the web) individual online calculators tend to come and 
go over the course of time. But they can be accessed from anywhere at any 
time; all you need is a device with a browser (a computer, tablet, or smart-
phone) and an Internet connection.

 Besides software, other very useful statistics-related resources are freely avail-
able on the web. These include interactive textbooks, tutorials, and other edu-
cational materials. Many of these are listed on the StatPages.info website.

On Paper: Printed Calculators
I recommend using the options that I list earlier in this chapter for most of 
your statistical calculations. But there are still a few times when ancient (that 
is, pre-computer) techniques can be useful. Believe it or not, it’s possible to 
create a printed page that, when used with a ruler or a piece of string, actu-
ally becomes a working calculator.

Nomograms, also called alignment charts, look something like ordinary 
graphs, but they’re quite different. They usually have three or more straight 
or curved scales corresponding to three or more variables that are related 
by some mathematical formula (like height, weight, and body mass index). 

http://statpages.org/
http://StatPages.info
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The scales are positioned on the paper in such a way that if you lay a ruler 
(or stretch a string) across them, it will intersect the scales at values that 
obey the mathematical expression. So if you know the values of any two of 
the three variables, you can easily find the corresponding value of the third 
variable.

Nomograms can’t be constructed for every possible three-variable expres-
sion, but when they can, they’re quite useful. Figure 4-1 shows a simple body-
mass-index nomogram; several others appear in this book. The dotted line 
shows that someone who is 5 feet, 9 inches tall and weighs 160 pounds has a 
BMI of about 24 kilograms per square meter (kg/m2), near the high end of the 
normal range.

 

Figure 4-1: 
A simple 

nomogram 
for body 

mass index, 
calculated 

from height 
and weight.

 
 Illustration by Wiley, Composition Services Graphics



Chapter 5

Conducting Clinical Research
In This Chapter
▶ Planning and carrying out a clinical research study
▶ Protecting the subjects
▶ Collecting, validating, and analyzing research data

T 
his chapter and the next one provide a closer look at a special kind of 
biological research — the clinical trial. This chapter describes some 

aspects of conducting clinical research; Chapter 6 gives you the “big picture” 
of pharmaceutical drug trials — an example of a high-profile, high-stakes, 
highly regulated research endeavor. Although you may never be involved in 
something as massive as a drug trial, the principles are just as relevant, even 
if you’re only trying to show whether drinking a fruit smoothie every day 
gives you more energy.

Designing a Clinical Study
Clinical studies should conform to the highest standards of scientific rigor, 
and that starts with the design of the study. The following sections note some 
aspects of good experimental design you should keep in mind at the start 
of any research project.

Identifying aims, objectives,  
hypotheses, and variables
The aims or goals of a study are short general statements (often just one 
statement) of the overall purpose of the trial. For example, the aim of a study 
may be “to assess the safety and efficacy of drug XYZ in patients with moder-
ate hyperlipidemia.” 
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The objectives are much more specific than the aims. Objectives usually refer 
to the effect of the product on specific safety and efficacy variables, at spe-
cific points in time, in specific groups of subjects. An efficacy study may have 
many individual efficacy objectives, as well as one or two safety objectives; a 
safety study may or may not have efficacy objectives.

 You should identify one or two primary objectives — those that are most 
directly related to the aim of the study and determine whether the product 
passes or fails in the study. You may then identify up to several dozen second-
ary objectives, which may involve different variables or the same variables 
at different time points or in different subsets of the study population. You 
may also list a set of exploratory objectives, which are less important, but still 
interesting. Finally, you list one or more safety objectives (if this is an efficacy 
study) or some efficacy objectives (if this is a safety study).

A typical set of primary, secondary, exploratory, and safety objectives (this 
example shows one of each type) for an efficacy study might look like this:

 ✓ Primary efficacy objective: To compare the effect of drug XYZ, relative 
to placebo, on changes in serum total cholesterol from baseline to week 
12, in patients with moderate hyperlipidemia.

 ✓ Secondary efficacy objective: To compare the effect of drug XYZ, 
relative to placebo, on changes in serum total cholesterol and serum 
triglycerides from baseline to weeks 4 and 8, in patients with moderate 
hyperlipidemia.

 ✓ Exploratory efficacy objective: To compare the effect of drug XYZ, relative 
to placebo, on changes in serum lipids from baseline to weeks 4, 8, and 12, 
in male and female subsets of patients with moderate hyperlipidemia.

 ✓ Safety objective: To evaluate the safety of drug XYZ, relative to placebo, in 
terms of the occurrence of adverse events, changes from baseline in vital 
signs (blood pressure and heart rate), and safety laboratory results (chem-
istry, hematology, and so on), in patients with moderate hyperlipidemia.

Hypotheses usually correspond to the objectives but are worded in a way that 
directly relates to the statistical testing to be performed. So the preceding 
primary objective may correspond to the following hypothesis: “The mean 
12-week reduction in total cholesterol will be greater in the XYZ group than in 
the placebo group.” Alternatively, the hypothesis may be expressed in a more 
formal mathematical notation and as a null and alternate pair (see Chapters 2 
and 3 for details on these terms and the mathematical notation used):

HNull: ΔXYZ – ΔPlacebo = 0

HAlt: ΔXYZ – ΔPlacebo > 0

where Δ = mean of (TCholWeek 12 – TCholBaseline).
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 Identifying the variables to collect in your study should be straightforward 
after you’ve enumerated all the objectives. Generally, you should plan on col-
lecting some or all of the following kinds of data:

 ✓ Basic demographic information (such as date of birth, gender, race, and 
ethnicity)

 ✓ Information about the subject’s participation in the study (for instance, 
date of enrollment, whether the subject met each inclusion and exclu-
sion criterion, date of each visit, measures of compliance, and final 
status (complete, withdrew, lost to follow-up, and so on)

 ✓ Basic baseline measurements (height, weight, vital signs, safety labora-
tory tests, and so forth)

 ✓ Subject and family medical history, including diseases, hospitalizations, 
smoking and other substance use, and current and past medications

 ✓ Laboratory and other testing (ECGs, X-rays, and so forth) results related 
to the study’s objectives

 ✓ Responses from questionnaires and other subjective assessments

 ✓ Occurrence of adverse events

Some of this information needs to be recorded only once (like birthdate, 
gender, and family history); other information (such as vital signs, dosing, and 
test results) may be acquired at scheduled or unscheduled visits, and some 
may be recorded only at unpredictable times, if at all (like adverse events).

 For very simple studies, you may be able to record all your data on a single 
(albeit large) sheet of ruled paper, with a row for each subject and a column 
for each variable. But in formal clinical studies, you need to design a Case 
Report Form (CRF). A CRF is often a booklet or binder with one page for the 
one-time data and a set of identical pages for each kind of recurring data. 
Many excellent CRF templates can be downloaded from the web, for example 
from globalhealthtrials.tghn.org/articles/downloadable- 
templates-and-tools-clinical-research/ (or just enter “CRF tem-
plates” in your browser). See the later section “Collecting and validating data” 
for more information on CRFs.

Deciding who will be in the study
Because you can’t examine the entire population of people with the condition 
you’re studying, you must select a representative sample from that popula-
tion (see Chapter 3 for an introduction to populations and samples). You do 
this by explicitly defining the conditions that determine whether or not a 
subject is suitable to be in the study.

http://globalhealthtrials.tghn.org/articles/downloadable-templates-and-tools-clinical-research/
http://globalhealthtrials.tghn.org/articles/downloadable-templates-and-tools-clinical-research/
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 ✓ Inclusion criteria are used during the screening process to identify 
potential subjects and usually involve subject characteristics that 
define the population you want to draw conclusions about. A reasonable 
inclusion criterion for a study of a lipid-lowering treatment would be, 
“Subject must have a documented diagnosis of hyperlipidemia, defined 
as Total Cholesterol > 200 mg/dL and LDL > 130 mg/dL at screening.”

 ✓ Exclusion criteria are used to identify subjects for whom participation 
would be unsafe or those whose participation would compromise the 
scientific integrity of the study (due to preexisting conditions, an inabil-
ity to understand instructions, and so on). The following usually appears 
in the list of exclusion criteria: “The subject is, in the judgment of the 
investigator, unlikely to be able to understand and comply with the 
treatment regimen prescribed by the protocol.”

 ✓ Withdrawal criteria describe situations that could arise during the 
study that would prevent the subject’s further participation for safety 
or other reasons (such as an intolerable adverse reaction or a serious 
noncompliance). A typical withdrawal criterion may be “The subject has 
missed two consecutive scheduled clinic visits.”

Choosing the structure of the study
Most clinical trials involving two or more test products have one of the fol-
lowing structures (or designs), each of which has both pros and cons:

 ✓ Parallel: Each subject receives one of the products. Parallel designs are 
simpler, quicker, and easier for each subject, but you need more sub-
jects. Trials with very long treatment periods usually have to be paral-
lel. The statistical analysis of parallel trials is generally simpler than for 
crossover trials (see the next bullet).

 ✓ Crossover: Each subject receives all the products in sequence during con-
secutive treatment periods (called phases) separated by washout intervals 
(lasting from several days to several weeks). Crossover designs can be 
more efficient, because each subject serves as his own control, eliminat-
ing subject-to-subject variability. But you can use crossover designs only if 
you’re certain that at the end of each washout period the subject will have 
been restored to the same condition as at the start of the study; this may be 
impossible for studies of progressive diseases, like cancer or emphysema.

Using randomization
Randomized controlled trials (RCTs) are the gold standard for clinical 
research. In an RCT, the subjects are randomly allocated into treatment 
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groups (in a parallel trial) or into treatment-sequence groups (in a crossover 
design). Randomization provides several advantages:

 ✓ It tends to eliminate selection bias — preferentially giving certain treat-
ments to certain subjects (assigning a placebo to the less “likeable” 
subjects) — and confounding, where the treatment groups differ with 
respect to some characteristic that influences the outcome.

 ✓ It permits the application of statistical methods to the analysis of the data.

 ✓ It facilitates blinding. Blinding (also called masking) refers to concealing 
the identity of the treatment from subjects and researchers, and can be 
one of two types:

	 •	Single-blinding: The subjects don’t know what treatment they’re 
receiving, but the investigators do.

	 •	Double-blinding: Neither the subjects nor the investigators know 
which subjects are receiving which treatments.

  Blinding eliminates bias resulting from the placebo effect, whereby 
subjects often respond favorably to any treatment (even a placebo), 
especially when the efficacy variables are subjective, such as pain level. 
Double-blinding also eliminates deliberate and subconscious bias in the 
investigator’s evaluation of a subject’s condition.

The simplest kind of randomization involves assigning each newly enrolled 
subject to a treatment group by the flip of a coin or a similar method. But 
simple randomization may produce an unbalanced pattern, like the one shown 
in Figure 5-1 for a small study of 12 subjects and two treatments: Drug (D) and 
Placebo (P).

 

Figure 5-1: 
Simple ran-
domization.

 
 Illustration by Wiley, Composition Services Graphics

If you were hoping to have six subjects in each group, you won’t like having 
only three subjects receiving the drug and nine receiving the placebo, but 
unbalanced patterns like this arise quite often from 12 coin flips. (Try it if you 
don’t believe me.)

A better approach is to require six subjects in each group, but to shuffle 
those six Ds and six Ps around randomly, as shown in Figure 5-2:
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Figure 5-2: 
Random 

shuffling.
 

 Illustration by Wiley, Composition Services Graphics

This arrangement is better (there are exactly six drug and six placebo subjects), 
but this particular random shuffle happens to assign more drugs to the earlier 
subjects and more placebos to the later subjects (again, bad luck of the draw). 
If these 12 subjects were enrolled over a period of five or six months, seasonal 
effects might be mistaken for treatment effects (an example of confounding).

To make sure that both treatments are evenly spread across the entire 
recruitment period, you can use blocked randomization, in which you divide 
your subjects into consecutive blocks and shuffle the assignments within 
each block. Often the block size is set to twice the number of treatment 
groups (for instance, a two-group study would use a block size of four), as 
shown in Figure 5-3.

 You can create simple and blocked randomization lists in Excel using the 
RAND built-in function to shuffle the assignments. You can also use the 
web page at graphpad.com/quickcalcs/randomize1.cfm to generate 
blocked randomization lists quickly and easily.

 

Figure 5-3: 
Blocked ran-

domization.
 

 Illustration by Wiley, Composition Services Graphics

Selecting the analyses to use
You should select the appropriate method for each of your study hypotheses 
based on the kind of data involved, the structure of the study, and the nature 
of the hypothesis. The rest of this book describes statistical methods to ana-
lyze the kinds of data you’re likely to encounter in clinical research. Changes 
in variables over time and differences between treatments in crossover stud-
ies are often analyzed by paired t tests and repeated-measures ANOVAs, and 
differences between groups of subjects in parallel studies are often analyzed 
by unpaired t tests and ANOVAs (see Chapter 12 for more on t tests and 
ANOVAs). Differences in the percentage of subjects responding to treatment 
or experiencing events are often compared with chi-square or Fisher Exact tests  

http://graphpad.com/quickcalcs/randomize1.cfm 
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(see Chapters 13 and 14 for the scoop on these tests). The associations 
between two or more variables are usually analyzed by regression methods 
(get the lowdown on regression in Part IV). Survival times (and the times to 
the occurrence of other endpoint events) are analyzed by survival methods 
(turn to Part V for the specifics of survival analysis).

Defining analytical populations
 Analytical populations are precisely defined subsets of the enrolled subjects 

that are used for different kinds of statistical analysis. Most clinical trials 
include the following types of analytical populations:

 ✓ The safety population: This group usually consists of all subjects who 
received at least one dose of any study product (even a placebo) and 
had at least one subsequent safety-related visit or observation. All safety-
related tabulations and analyses are done on the safety population.

 ✓ The intent-to-treat (ITT) population: This population usually consists of 
all subjects who received any study product. The ITT population is useful 
for assessing effectiveness — how well the product performs in the real 
world, where people don’t always take the product as recommended 
(because of laziness, inconvenience, unpleasant side effects, and so on).

 ✓ The per-protocol (PP) population: This group is usually defined as all 
subjects who complied with the rules of the study — those people who 
took the product as prescribed, made all test visits, and didn’t have any 
serious protocol violations. The PP population is useful for assessing 
efficacy — how well the product works in an ideal world where everyone 
takes it as prescribed.

Other special populations may be defined for special kinds of analysis. For 
example, if the study involves taking a special set of blood samples for phar-
macokinetic (PK) calculations, the protocol usually defines a PK population 
consisting of all subjects who provided suitable PK samples.

Determining how many subjects to enroll
You should enroll enough subjects to provide sufficient statistical power (see 
Chapter 3) when testing the primary objective of the study. The specific way 
you calculate the required sample size depends on the statistical test that’s 
used for the primary hypothesis. Each chapter of this book that describes 
hypothesis tests shows how to estimate the required sample size for that 
test. Also, you can use the formulas, tables, and charts in Chapter 26 and in 
the Cheat Sheet (at www.dummies.com/cheatsheet/biostatistics) to 
get quick sample-size estimates.

http://www.dummies.com/cheatsheet/biostatistics
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 You must also allow for some of the enrolled subjects dropping out or being 
unsuitable for analysis. If, for example, you need 64 analyzable subjects for 
sufficient power and you expect 15 percent attrition from the study (in other 
words, you expect only 85 percent of the enrolled subjects to have analyzable 
data), you need to enroll 64/0.85, or 76, subjects in the study.

Putting together the protocol
A protocol is a document that lays out exactly what you plan to do in a clini-
cal study. Ideally, every study involving human subjects should have a pro-
tocol. The following sections list standard components and administrative 
information found in a protocol.

Standard elements
A formal drug trial protocol usually contains most of the following components:

 ✓ Title: A title conveys as much information about the trial as you can fit 
into one sentence, including the protocol ID, study name (if it has one), 
clinical phase, type and structure of trial, type of randomization and blind-
ing, name of the product, treatment regimen, intended effect, and the pop-
ulation being studied (what medical condition, in what group of people). 
A title can be quite long — this one has all the preceding elements:

  Protocol BCAM521-13-01 (ASPIRE-2) — a Phase-IIa, double-blind, placebo-
controlled, randomized, parallel-group study of the safety and efficacy of 
three different doses of AM521, given intravenously, once per month for six 
months, for the relief of chronic pain, in adults with knee osteoporosis.

 ✓ Background information: This section includes info about the disease 
(such as its prevalence and impact), known physiology (at the molecular 
level, if known), treatments currently available (if any), and information 
about this drug (its mechanism of action, the results of prior testing, and 
known and potential risks and benefits to subjects).

 ✓ Rationale: The rationale for the study states why it makes sense to do 
this study at this time, including a justification for the choice of doses, 
how the drug is administered (such as orally or intravenously), and the 
duration of therapy and follow-up.

 ✓ Aims, objectives, and hypotheses: I discuss these items in the earlier 
section “Aims, objectives, hypotheses, and variables.”

 ✓ Detailed descriptions of all inclusion, exclusion, and withdrawal crite-
ria: See the earlier section “Deciding who will be in the study” for more 
about these terms.

 ✓ Design of study: The study’s design defines its structure (check out 
the earlier section “Choosing the structure of the study”), the number 
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of treatment groups, and the consecutive stages (screening, washout, 
treatment, follow-up, and so on). This section often includes a schematic 
diagram of the structure of the study.

 ✓ Product description: This description details each product that will be 
administered to the subjects, including the chemical composition (with 
the results of chemical analysis of the product, if available) and how to 
store, prepare, and administer the product.

 ✓ Blinding and randomization schemes: These schemes include descrip-
tions of how and when the study will be unblinded (including the emer-
gency unblinding of individual subjects, if necessary); see the earlier 
section “Using randomization.”

 ✓ Procedural descriptions: This section describes every procedure that 
will be performed at every visit, including administrative procedures 
(such as enrollment and informed consent) and diagnostic procedures 
(for example, physical exams and vital signs).

 ✓ Safety considerations: These factors include the known and potential 
side effects of the product and each test procedure (such as X-rays, 
MRI scans, and blood draws), including steps taken to minimize the risk 
to the subjects.

 ✓ Handling of adverse events: This section describes how adverse events 
will be recorded — description, severity, dates and times of onset and 
resolution, any medical treatment given for the event, and whether or 
not the investigator thinks the event was related to the study product. 
Reporting adverse events has become quite standardized over the 
years, so this section tends to be very similar for all studies.

 ✓ Definition of safety, efficacy, and other analytical populations: This sec-
tion includes definitions of safety and efficacy variables and endpoints 
(variables or changes in variables that serve as indicators of safety or effi-
cacy). See the earlier section “Defining analytical populations.”

 ✓ Planned enrollment and analyzable sample size: Justification for these 
numbers must also be provided.

 ✓ Proposed statistical analyses: Some protocols describe, in detail, every 
analysis for every objective; others have only a summary and refer to 
a separate Statistical Analysis Plan (SAP) document for details of the 
proposed analysis. This section should also include descriptions of 
the treatment of missing data, adjustments for multiple testing to con-
trol Type I errors (see Chapter 3), and whether any interim analyses 
are planned. If a separate SAP is used, it will usually contain a detailed 
description of all the calculations and analyses that will be carried out 
on the data, including the descriptive summaries of all data and the 
testing of all the hypotheses specified in the protocol. The SAP also usu-
ally contains mock-ups, or “shells” of all the tables, listings, and figures 
(referred to as TLFs) that will be generated from the data.
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Administrative details
A protocol also has sections with more administrative information:

 ✓ Names of and contact info for the sponsor, medical expert, and primary 
investigator, plus the physicians, labs, and other major medical or tech-
nical groups involved

 ✓ A table of contents, similar to the kind you find in many books (includ-
ing this one)

 ✓ A synopsis, which is a short (usually around two pages) summary of the 
main components of the protocol

 ✓ A list of abbreviations and terms appearing in the protocol

 ✓ A description of your policies for data handling, record-keeping, quality 
control, ethical considerations, access to source documents, and publi-
cation of results

 ✓ Financing and insurance agreements

 ✓ Descriptions of all amendments made to the original protocol

Carrying Out a Clinical Study
After you’ve designed your study and have described it in the protocol docu-
ment, it’s time to set things in motion. The operational details will, of course, 
vary from one study to another, but a few aspects apply to all clinical studies. 
In any study involving human subjects, the most important consideration is 
protecting those subjects from harm, and an elaborate set of safeguards has 
evolved over the past century. And in any scientific investigation, the accu-
rate collection of data is crucial to the success of the research.

Protecting your subjects
 In any research involving human subjects, two issues are of utmost importance:

 ✓ Safety: Minimizing the risk of physical harm to the subjects from the 
product being tested and from the procedures involved in the study

 ✓ Privacy/confidentiality: Ensuring that data collected during the study 
is not made public in a way that identifies a specific subject without the 
subject’s consent

The following sections describe some of the “infrastructure” that helps pro-
tect human subjects.



71 Chapter 5: Conducting Clinical Research

Surveying regulatory agencies
In the United States, several government organizations oversee human sub-
jects’ protection:

 ✓ Commercial pharmaceutical research is governed by the Food and Drug 
Administration (FDA).

 ✓ Most academic biological research is sponsored by the National 
Institutes of Health (NIH) and is governed by the Office for Human 
Research Protections (OHRP).

Chapter 6 describes the ways investigators interact with these agencies 
during the course of clinical research.

 Other countries have similar agencies. There’s also an organization — the 
International Conference on Harmonization (ICH) — that works to establish a 
set of consistent standards that can be applied worldwide. The FDA and NIH 
have adopted many ICH standards (with some modifications).

Working with Institutional Review Boards
For all but the very simplest research involving human subjects, you need 
the approval of an IRB — an Institutional (or Independent) Review Board — 
before enrolling any subjects into your study. You have to submit an applica-
tion along with the protocol and an ICF (see the next section) to an IRB with 
jurisdiction over your research.

Most medical centers and academic institutions — and some pharmaceutical 
companies — have their own IRBs with jurisdiction over research conducted 
at their institution. If you’re not affiliated with one of these centers or institu-
tions (for example, if you’re a physician in private practice), you may need 
the services of a “free-standing” IRB. The sponsor of the research may sug-
gest (or dictate) an IRB for the project.

Getting informed consent
An important part of protecting human subjects is making sure that they’re 
aware of the risks of a study before agreeing to participate in it. You must 
prepare an Informed Consent Form (ICF) describing, in simple language, the 
nature of the study, why it is being conducted, what is being tested, what 
procedures subjects will undergo, and what the risks and benefits are. 
Subjects must be told that they can refuse to participate and can withdraw at 
any time for any reason, without fear of retribution or the withholding of reg-
ular medical care. The IRB can usually provide ICF templates with examples 
of their recommended or required wording.
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 Prior to performing any procedures on a potential subject (including screen-
ing tests), you must give the ICF document to the subject and give her time to 
read it and decide whether she wants to participate. The subject’s agreement 
must be signed and witnessed. The signed ICFs must be retained as part of the 
official documentation for the project, along with laboratory reports, ECG trac-
ings, and records of all test products administered to the subjects and proce-
dures performed on them. The sponsor, the regulatory agencies, the IRB, and 
other entities may call for these documents at any time.

Considering data safety monitoring boards and committees
For clinical trials of products that are likely to be of low risk, investigators are 
usually responsible for being on the lookout for signs of trouble (unexpected 
adverse events, abnormal laboratory tests, and so forth) during the course 
of the study. But for studies involving high-risk treatments (like cancer 
chemotherapy trials), a separate data safety monitoring board or committee 
(DSMB or DSMC) may be set up. A DSMB may be required by the sponsor, 
the investigator, the IRB, or a regulatory agency. A DSMB typically has about 
six members (usually expert clinicians in the relevant area of research and a 
statistician) who meet at regular intervals to review the safety data acquired 
up to that point. The committee is authorized to modify, suspend, or even 
terminate a study if it has serious concerns about the safety of the subjects.

Getting certified in human subjects protection and good clinical practice
As you’ve probably surmised from the preceding sections, clinical research 
is fraught with regulatory requirements (with severe penalties for noncompli-
ance), and you shouldn’t try to “wing it” and hope that everything goes well. 
You should ensure that you, along with any others who may be assisting 
you, are properly trained in matters relating to human subjects protection. 
Fortunately, such training is readily available. Most hospitals and medical 
centers provide yearly training (often as a half-day session), after which you 
receive a certification in human subjects protection. Most IRBs and funding 
agencies require proof of certification from all people who are involved in the 
research. If you don’t have access to that training at your institution, you can 
get certified by taking an online tutorial offered by the NIH (grants.nih.
gov/grants/policy/hs/training.htm).

You should also have one or more of the people who will be involved in the 
research take a course in “good clinical practice” (GCP). GCP certification is 
also available online (enter “GCP certification” in your favorite browser).

Collecting and validating data
If the case report form (CRF) has been carefully and logically designed, enter-
ing each subject’s data in the right place on the CRF should be straightforward. 

http://grants.nih.gov/grants/policy/hs/training.htm
http://grants.nih.gov/grants/policy/hs/training.htm
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Then you need to get this data into a computer for analysis. You can enter 
your data directly into the statistics software you plan to use for the majority 
of the analysis (see Chapter 4 for some software options), or you can enter it 
into a general database program such as MS Access or a spreadsheet program 
like Excel. The structure of a computerized database usually reflects the struc-
ture of the CRF. If a study is simple enough that a single data sheet can hold all 
the data, then a single data file (called a table) or a single Excel worksheet will 
suffice. But for most studies, a more complicated database is required, consist-
ing of a set of tables or Excel worksheets (one for each kind of data collection 
sheet in the CRF). If the design of the database is consistent with the structure 
of the CRF, entering the data from each CRF sheet into the corresponding data 
table shouldn’t be difficult.

 You must retain all the original source documents (lab reports, the examining 
physician’s notes, original questionnaire sheets, and so forth) in case ques-
tions about data accuracy arise later.

 Before you can analyze your data (see the next section), you must do one 
more crucially important task — check your data thoroughly for errors! And 
there will be errors — they can arise from transcribing data from the source 
documents onto the CRF or from entering the data from the CRFs into the 
computer. Consider some of the following error-checking techniques:

 ✓ Have one person read data from the source documents or CRFs while 
another looks at the data that’s in the computer. Ideally, this is done 
with all data for all subjects.

 ✓ Have the computer display the smallest and largest values of each vari-
able. Better yet, have the computer display a sorted list of the values for 
each variable. Typing errors often produce very large or very small values.

 ✓ A more extreme approach, but one that’s sometimes done for crucially 
important studies, is to have two people enter all the data into separate 
copies of the database; then have the computer automatically compare 
every single data item between the two databases.

Chapter 7 has more details on describing, entering, and checking different 
types of data.

Analyzing Your Data
The remainder of this book explains the methods commonly used in bio-
statistics to summarize, graph, and analyze data. In the following sections, 
I describe some general situations that come up in all clinical research, 
regardless of what kind of analysis you use.
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Dealing with missing data
Most clinical trials have incomplete data for one or more variables, which 
can be a real headache when analyzing your data. The statistical aspects of 
missing data are quite complicated, so you should consult a statistician if 
you have more than just occasional, isolated missing values. Here I describe 
some commonly used approaches to coping with missing data:

 ✓ Exclude a case from an analysis if any of the required variables for that 
analysis is missing. This approach can reduce the number of analyz-
able cases, sometimes quite severely (especially in multiple regression, 
where the whole case must be thrown out, even if only one of the vari-
ables in the regression is missing; see Chapter 19 for more information). 
And if the result is missing for a reason that’s related to treatment effi-
cacy, excluding the case can bias your results.

 ✓ Replace (impute) a missing value with the mean (or median) of all the 
available values for that variable. This approach is quite common, but it 
introduces several types of bias into your results, so it’s not a good tech-
nique to use.

 ✓ If one of a series of sequential measurements on a subject is missing 
(like the third of a series of weekly glucose values), use the previous 
value in the series. This technique is called Last Observation Carried 
Forward (LOCF) and is one of the most widely used strategies. LOCF usu-
ally produces “conservative” results, making it more difficult to prove 
efficacy. This approach is popular with regulators, who want to put the 
burden of proof on the drug.

 More complicated methods can also be used, such as estimating the miss-
ing value of a variable based on the relationship between that variable and 
other variables in the data set, or using an analytical method like mixed-model 
repeated measures (MMRM) analysis, which uses all available data and doesn’t 
reject a case just because one variable is missing. But these methods are far 
beyond the scope of this book, and you shouldn’t try them yourself.

Handling multiplicity
Every time you perform a statistical significance test, you run a chance of being 
fooled by random fluctuations into thinking that some real effect is present in 
your data when, in fact, none exists. This scenario is called a Type I error (see 
Chapter 3). When you say that you require p < 0.05 for significance, you’re 
testing at the 0.05 (or 5 percent) alpha level (see Chapter 3) or saying that you 
want to limit your Type I error rate to 5 percent. But that 5 percent error rate 
applies to each and every statistical test you run. The more analyses you per-
form on a data set, the more your overall alpha level increases: Perform two 
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tests and your chance of at least one of them coming out falsely significant is 
about 10 percent; run 40 tests, and the overall alpha level jumps to 87 percent. 
This is referred to as the problem of multiplicity, or as Type I error inflation.

Some statistical methods involving multiple comparisons (like post-hoc 
tests following an ANOVA for comparing several groups, as described in 
Chapter 12) incorporate a built-in adjustment to keep the overall alpha at only 
5 percent across all comparisons. But when you’re testing different hypoth-
eses, like comparing different variables at different time points between differ-
ent groups, it’s up to you to decide what kind of alpha control strategy (if any) 
you want to implement. You have several choices, including the following:

 ✓ Don’t control for multiplicity and accept the likelihood that some of 
your “significant” findings will be falsely significant. This strategy is 
often used with hypotheses related to secondary and exploratory objec-
tives; the protocol usually states that no final inferences will be made 
from these exploratory tests. Any “significant” results will be considered 
only “signals” of possible real effects and will have to be confirmed in 
subsequent studies before any final conclusions are drawn.

 ✓ Control the alpha level across only the most important hypotheses. If 
you have two co-primary objectives, you can control alpha across the 
tests of those two objectives.

  You can control alpha to 5 percent (or to any level you want) across a set 
of n hypothesis tests in several ways; following are some popular ones:

	 •	The Bonferroni adjustment: Test each hypothesis at the 0.05/n alpha 
level. So to control overall alpha to 0.05 across two primary end-
points, you need p < 0.025 for significance when testing each one.

	 •	A hierarchical testing strategy: Rank your endpoints in descend-
ing order of importance. Test the most important one first, and if 
it gives p < 0.05, conclude that the effect is real. Then test the next 
most important one, again using p < 0.05 for significance. Continue 
until you get a nonsignificant result (p > 0.05); then stop testing (or 
consider all further tests to be only exploratory and don’t draw 
any formal conclusions about them).

	 •	Controlling the false discovery rate (FDR): This approach has 
become popular in recent years to deal with large-scale multiplicity, 
which arises in areas like genomic testing and digital image analysis 
that may involve many thousands of tests (such as one per gene or 
one per pixel) instead of just a few. Instead of trying to avoid even a 
single false conclusion of significance (as the Bonferroni and other 
classic alpha control methods do), you simply want to control the 
proportion of tests that come out falsely positive, limiting that false 
discovery rate to some reasonable fraction of all the tests. These 
positive results can then be tested in a follow-up study.
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Incorporating interim analyses
An interim analysis is one that’s carried out before the conclusion of a clinical 
trial, using only the data that has been obtained so far. Interim analyses can 
be blinded or unblinded and can be done for several reasons:

 ✓ An IRB may require an early look at the data to ensure that subjects 
aren’t being exposed to an unacceptable level of risk.

 ✓ You may want to examine data halfway through the trial to see whether 
the trial can be stopped early for one of the following reasons:

	 •	The	product	is	so effective that going to completion isn’t necessary 
to prove significance.

	 •	The	product	is	so ineffective that continuing the trial is futile.

 ✓ You may want to check some of the assumptions that went into the 
original design and sample-size calculations of the trial (like within-
group variability, recruitment rates, base event rates, and so on) to see 
whether the total sample size should be adjusted upward or downward.

If the interim analysis could possibly lead to early stopping of the trial for 
proven efficacy, then the issue of multiplicity comes into play, and special meth-
ods must be used to control alpha across the interim and final analyses. These 
methods often involve some kind of alpha spending strategy. The concepts are 
subtle, and the calculations can be complicated, but here’s a very simple exam-
ple that illustrates the basic concept. Suppose your original plan is to test the 
efficacy endpoint at the end of the trial at the 5 percent alpha level. If you want 
to design an interim analysis into this trial, you may use this two-part strategy:

 1. Spend one-fifth of the available 5 percent alpha at the interim analysis.

  The interim analysis p value must be < 0.01 to stop the trial early and 
claim efficacy.

 2. Spend the remaining four-fifths of the 5 percent alpha at the end.

  The end analysis p value must be < 0.04 to claim efficacy.

This strategy preserves the 5 percent overall alpha level while still giving the 
drug a chance to prove itself at an early point in the trial.



Chapter 6

Looking at Clinical Trials and  
Drug Development

In This Chapter
▶ Understanding preclinical (that is, “before humans”) studies
▶ Walking through the phases of clinical studies that test on humans
▶ Checking out other special-purpose clinical trials

M 
any of the chapters in this book concentrate on specific statistical 
techniques and tests, but this chapter gives a bigger picture of one 

of the main settings where biostatistics is used: clinical research (covered 
in Chapter 5). As an example, I talk about one particular kind of clinical 
research: developing a drug and bringing it to market. Many a biostatistician 
may go his entire career without ever being involved in a clinical drug trial. 
However, clinical research is worth taking a look at, for several reasons:

 ✓ It’s a broad area of research that covers many types of investigation: 
laboratory, clinical, epidemiological, and computational experiments.

 ✓ All the statistical topics, tests, and techniques covered in this book are 
used at one or more stages of drug development.

 ✓ It’s a high-stakes undertaking, costing hundreds of millions of dollars, 
and the return on that investment can range from zero dollars to many 
billions of dollars. So drug developers are highly motivated to do things 
properly, and that includes using the best statistical techniques through-
out the process.

 ✓ Because of the potential for enormous good — or enormous harm — 
drug development must be conducted at the highest level of scientific 
(and statistical) rigor. The process is very closely scrutinized and heav-
ily regulated.

This chapter takes you through the typical steps involved in bringing a prom-
ising chemical to market as a prescription drug. In broad strokes, this pro-
cess usually involves most of the following steps:
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 1. Discover a chemical compound or biological agent that shows promise as 
a treatment for some disease, illness, or other medical or physical condi-
tion (which I refer to throughout this chapter as a target condition).

 2. Show that this compound does things at the molecular level (inside the 
cell) that indicate it may be beneficial in treating the target condition.

 3. Test the drug in animals.

  The purpose of this testing is to show that, at least for animals, the drug 
seems to be fairly safe, and it appears to be effective in treating the 
target condition (or something similar to it).

 4. Test the drug in humans.

  This testing entails a set of logical steps to establish the largest dose 
that a person can tolerate, find the dose (or a couple of doses) that 
seems to offer the best combination of safety and efficacy, and demon-
strate convincingly that the drug works.

 5. Continue to monitor the safety of the drug in an ever-increasing 
number of users after it’s approved and marketed.

 Throughout this chapter, I use the words effectiveness and efficacy (and their 
adjective forms effective and efficacious) to refer to how well a treatment 
works. These words are not synonymous:

 ✓ Efficacy refers to how well a treatment works in an ideal-world situation, 
where everybody takes it exactly as prescribed.

 ✓ Effectiveness refers to how well the treatment works in the real world, 
where people might refuse to take it as directed (or at all) because of 
its unpleasantness and/or its side effects. (This is especially relevant in 
chemotherapy trials, but it comes up in all kinds of clinical testing.)

Both of these aspects of drug performance are important: efficacy perhaps 
more so in the early stages of drug development, because it addresses the 
theoretical question of whether the drug can possibly work, and effective-
ness more so in the later stages, where the drug’s actual real-world perfor-
mance is of more concern. Common usage doesn’t always honor this subtle 
distinction; the terms “safety and efficacy” and “safe and effective” seem to 
be more popular than the alternatives “safety and effectiveness” or “safe and 
efficacious,” so I use the more popular forms in this chapter.

Not Ready for Human Consumption: 
Doing Preclinical Studies

Before any proposed treatment can be tested on humans, there must be at 
least some reason to believe that the treatment might work and that it won’t 
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put the subjects at undue risk. So every promising chemical compound or 
biological agent must undergo a series of tests to assemble this body of evi-
dence before ever being given to a human subject. These “before human” 
experiments are called preclinical studies, and they’re carried out in a pro-
gressive sequence:

 ✓ Theoretical molecular studies (in silico): You can take a chemical 
structure suggested by molecular biologists, systematically generate 
thousands of similar molecules (varying a few atoms here and there), 
and run them through a program that tries to predict how well each 
variant may interact with a receptor (a molecule often in or on the body’s 
cells that plays a role in the development or progression of the target 
condition). This kind of theoretical investigation is sometimes called an 
in silico study (a term first used in 1989 to describe research conducted 
by computer simulation of biological molecules, cells, organs, or organ-
isms; it means in silicon, referring to semiconductor computer circuits). 
These techniques are now routinely used to design new large-molecule 
drugs (like naturally occurring or artificially created proteins), for which 
the computer simulations tend to be quite reliable.

 ✓ Chemical studies (in vitro): While computer simulations may sug-
gest promising large molecules, you generally have to evaluate small-
molecule drugs in the lab. These studies try to determine the physical, 
chemical, electrical, and other properties of the molecule. They’re called 
in vitro studies, meaning in glass, a reference to the tired old stereotype 
of the chemist in a white lab coat, pouring a colored liquid from one test 
tube to another. Don’t forget your goggles and wild hair.

 ✓ Studies on cells and tissues (ex vivo): The next step in evaluating a can-
didate drug is to see how it actually affects living cells, tissues, and pos-
sibly even complete organs. This kind of study is sometimes called ex 
vivo, meaning out of the living, because the cells and tissues have been 
taken out of a living creature. The researchers are looking for changes 
in these cells and tissues that seem to be related, in some way, to the 
target condition.

 ✓ Animal studies (in vivo): After studies show that a molecule undergoes 
chemical reactions and interacts the right way with the targeted receptor 
sites, you can evaluate the drug’s effect on complete living organisms to 
see what the drug actually does for them (how effective it is) and what it 
may do to them (how safe it is). These studies are called in vivo, meaning 
in the living, because they’re conducted on intact living creatures.

  In vivo studies tend to be more useful for small-molecule drugs than for 
large-molecule drugs. Animals and humans may react similarly to small 
molecules, but the actions of antibodies and proteins tend to be very dif-
ferent between species.
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Testing on People during Clinical Trials 
to Check a Drug’s Safety and Efficacy

After a promising candidate drug has been thoroughly tested in the labora-
tory and on animals, shows the desired effect, and hasn’t raised any serious 
warning flags about dangerous side effects (see the preceding section), then 
it’s time to make the big leap to clinical trials: testing on humans. But you 
can’t just give the drug to a bunch of people who have the condition and see 
whether it helps them. Safety issues become a serious concern when human 
subjects are involved, and human testing has to be done in a very systematic 
way to minimize risks.

Clinical drug development is a heavily regulated activity. Every country 
has an agency that oversees drug development — the U.S. Food and Drug 
Administration (FDA), Health Canada, the European Medicines Agency (EMEA), 
the Japanese Ministry of Health and Welfare, and on and on. These agencies 
have an enormous number of rules, regulations, guidelines, and procedures for 
every stage of the process. (Note: In this chapter, I use FDA to stand not only 
for the U.S. regulatory agency, but for all such agencies worldwide.)

Before you can test your drug in people, you must show the FDA all the 
results of the testing you’ve done in laboratory animals and what you pro-
pose to do while testing your drug on humans. The FDA decides whether it’s 
reasonably safe to do the clinical trials. The following sections describe the 
four phases of a clinical trial.

Phase I: Determining the  
maximum  tolerated dose
An old saying (six centuries old, in fact) is that “dose makes the poison.” This 
adage means that everything is safe in low enough doses (I can fearlessly swal-
low one microgram of pure potassium cyanide), but anything can be lethal in suf-
ficiently large doses (drinking a gallon of pure water in an hour may well kill me).

So the first step (Phase I) in human drug testing is to determine how much 
drug you can safely give to a person, which scientists express in more- 
precisely defined terms:

 ✓ Dose-limiting toxicities (DLTs) are unacceptable side effects that would 
force the treatment to stop (or continue at a reduced dose). The term 
unacceptable is relative; severe nausea and vomiting would probably be 
considered unacceptable (and therefore DLTs) for a headache remedy, 
but not for a chemotherapy drug. For each drug, a group of experts 
decides what reactions constitute a DLT.



81 Chapter 6: Looking at Clinical Trials and Drug Development

 ✓ The maximum tolerated dose (MTD) is the largest dose that doesn’t pro-
duce DLTs in a substantial number of subjects (say, more than 5 or 10 
percent of them).

The goal of a Phase I trial is to determine the drug’s MTD, which will mark the 
upper end of the range of doses that will be allowed in all subsequent trials 
of this drug. A typical Phase I trial enrolls subjects into successive groups 
(cohorts) of about eight subjects each. The first cohort gets the drug at one 
particular dose and its subjects are then watched to see whether they experi-
ence any DLTs. If not, then the next cohort is given a larger dose (perhaps 50 
percent larger or twice as large). This dose-escalation process continues as 
long as no DLTs are seen.

As soon as one or more DLTs occur in a cohort, the area around that dose 
level is explored in more detail in an attempt to nail down the best estimate 
of the MTD. Depending on how many DLTs are observed at a particular dose 
level, the protocol may specify testing another cohort at the same dose, at 
the previous (lower) dose level, or somewhere in between.

Phase I trials are usually done on healthy volunteers because they’re mainly 
about safety. An exception is trials of cancer chemotherapy agents, which 
have so many unpleasant effects (many of them can actually cause cancer) 
that it’s usually unethical to give them to healthy subjects.

A drug may undergo several Phase I trials. Many drugs are meant to be taken 
more than once — either as a finite course of treatment (as for chemother-
apy) or as an ongoing treatment (as for high blood pressure). The first Phase 
I trial usually involves a single dosing; others may involve repetitive dosing 
patterns that reflect how the drug will actually be administered to patients.

The statistical analysis of Phase I data is usually simple, with little more than 
descriptive summary tables and graphs of event rates at each dose level. 
Usually, no hypotheses are involved, so no statistical testing is required. 
Sample sizes for Phase I studies are usually based on prior experience with 
similar kinds of drugs, not on formal power calculations (see Chapter 3).

The dose level for the first cohort is usually some small fraction of the lowest 
dose that causes toxicity in animals. You might guess that tolerable drug 
doses should be proportional to the weight of the animal, so if a 5-kilogram 
monkey can tolerate 30 milligrams of a drug, a 50-kilogram human should tol-
erate 300 milligrams. But tolerable doses often don’t scale up in such a simple, 
proportionate way, so researchers often cut the scaled-up dose estimate 
down by a factor of 10 or more to get a safe starting dose for human trials.

 Even with these precautions, the first cohort is always at extra risk, simply 
because you’re sailing in uncharted waters. Besides the possibility of non-
proportional scale-up, there’s the additional danger of a totally unforeseen 
serious reaction to the drug. Some drugs (especially antibody drugs) that 
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were perfectly well tolerated in rats, dogs, and monkeys have triggered severe 
(even fatal) reactions in humans at conservatively scaled-up doses that were 
thought to be completely safe. So extra precautions are usually put in place 
for these “first in man” studies.

Besides the primary goal of establishing the MTD for the drug, a Phase I study 
almost always has some secondary goals as well. After all, if you go to the trou-
ble of getting 50 subjects, giving them the drug, and keeping them under close 
scrutiny for a day or two afterward, why not take advantage of the opportunity 
to gather a little more data about how the drug behaves in humans?

With a few extra blood draws, urine collections, and a stool specimen or two, 
you can get a pretty good idea of the drug’s basic pharmacokinetics:

 ✓ How fast it’s absorbed into the bloodstream (if it’s taken orally)

 ✓ How fast (and by what route) it’s eliminated from the body

And, of course, you don’t want to pass up the chance to see whether the drug 
shows any signs of efficacy (no matter how slight).

Phase II: Finding out about  
the drug’s performance
After the Phase I trials, you’ll have a good estimate of the MTD for the drug. 
The next step is to find out about the drug’s safety and efficacy at various 
doses. You may also be looking at several different dosing regimens, includ-
ing the following options:

 ✓ What route (oral or intravenous, for example) to give the drug

 ✓ How frequently to give the drug

 ✓ For how long (or for what duration) to give the drug

 Generally, you have several Phase II studies, with each study testing the drug 
at several different dose levels up to the MTD to find the dose that offers the 
best tradeoff between safety and efficacy. Phase II trials are called dose-finding 
trials; at the end of Phase II, you should have established the dose (or perhaps 
two doses) at which you would like to market the drug.

A Phase II trial usually has a parallel, randomized, and blinded design (see 
Chapter 5 for an explanation of these terms), enrolling a few dozen to several 
hundred subjects who have the target condition for the drug (such as diabe-
tes, hypertension, or cancer).

You acquire data, before and after drug administration, relating to the safety 
and efficacy of the drug. The basic idea is to find the dose that gives the 
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 highest efficacy with the fewest safety issues. The situation can be viewed in 
an idealized form in Figure 6-1.

 

Figure 6-1: 
A Phase II 

trial tries 
to find the 
dose that 
gives the 

best tradeoff 
between 

safety (few 
adverse 
events) 

and effi-
cacy (high 
response).

 
 Illustration by Wiley, Composition Services Graphics

Efficacy is usually assessed by several variables (called efficacy endpoints) 
observed during the trial. These depend on the drug being tested and can 
include:

 ✓ Changes in measurable quantities directly related to the target condi-
tion, such as cholesterol, blood pressure, glucose, and tumor size

 ✓ Increase in quality-of-life questionnaire scores

 ✓ Percent of subjects who respond to the treatment (using some accept-
able definition of response)

Also, safety has several indicators, including

 ✓ The percent of subjects experiencing various types of adverse events

 ✓ Changes in safety lab values, such as hemoglobin

 ✓ Changes in vital signs, such as heart rate and blood pressure

 Usually each safety and efficacy indicator is summarized and graphed by dose 
level and examined for evidence of some kind of “dose-response” associa-
tion. (I describe how to test for significant association between variables in 
Chapter 17.) The graphs may indicate peculiar dose-response behavior; for 
example, efficacy may increase up to some optimal dose and then decrease 
for higher doses.
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Figure 6-1, in which an overall safety measure and an overall efficacy measure 
are both shown in the same graph, is useful because it makes the point that 
(ideally, at least) there should be some range of doses for which the efficacy 
is relatively high and the rate of side effects is low. In Figure 6-1, that range 
appears to lie between 150 and 350 milligrams:

 ✓ Below 150 milligrams, the drug is very safe (few adverse events), but 
less than half as effective as it is at higher doses.

 ✓ Between 150 and 300 milligrams, the drug is quite safe (few adverse 
events) and seems to be fairly effective (a high response rate).

 ✓ Above 300 milligrams, the drug is very effective, but more than 25 per-
cent of the subjects experience side effects and other safety issues.

The “sweet spot” for this drug is probably somewhere around 220 milligrams, 
where 80 percent of the subjects respond to treatment and the side-effects 
rate is in the single digits. The actual choice of best dose may have to be 
thrashed out between clinicians, businesspeople, bioethicists, and other 
experts, based on a careful examination of all the safety and efficacy data 
from all the Phase II studies.

 The farther apart the two curves are in Figure 6-1, the wider the range of good 
doses (those with high efficacy and low side effects) is. This range is called the 
therapeutic range. But if the two curves are very close together, there may be no 
dose level that delivers the right mix of efficacy and safety. In that case, it’s the 
end of the road for this drug. The majority of drugs never make it past Phase II.

Between the end of Phase II and the beginning of Phase III, you meet again 
with the FDA, which reviews all your results up to that point and tells you 
what it considers an acceptable demonstration of safety and efficacy.

Phase III: Proving that the drug works
If Phase II is successful, it means you’ve found one or two doses for which the 
drug appears to be safe and effective. Now you take those doses into the final 
stage of drug testing: Phase III.

Phase III is kind of like the drug’s final exam time. It has to put up or shut up, 
sink or swim, pass or fail. Up to this point, the drug appears to be safe and 
effective, and you have reason to hope that it’s worth the time and expense 
to continue development. Now the drug team has to convince the FDA — 
which demands proof at the highest level of scientific rigor — that the drug, 
in the dose(s) at which you plan to market it, is safe and effective. Depending 
on what treatments (if any) currently exist for the target condition, you may 
have to show that your drug is better than a placebo or that it’s at least as 
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good as the current best treatment. (You don’t have to show that it’s better 
than the current treatments. See Chapter 16.)

 The term as good as can refer to both safety and efficacy. Your new cho-
lesterol medication may not lower cholesterol as much as the current best 
treatments, but if it’s almost completely free of the (sometimes serious) side 
effects associated with the current treatments, it may be considered just as 
good or even better.

Usually you need to design and carry out two pivotal Phase III studies. In each 
of these, the drug must meet the criteria agreed upon when you met with the 
FDA after Phase II.

The pivotal Phase III studies have to be designed with complete scientific 
rigor, and that includes absolutely rigorous statistical design. You must

 ✓ Use the most appropriate statistical design (as described in Chapter 5).

 ✓ Use the best statistical methods when analyzing the data.

 ✓ Ensure that the sample size is large enough to provide at least 80 or 90 
percent power to show significance when testing the efficacy of the drug 
(see Chapter 3).

If the FDA decided that the drug must prove its efficacy for two different mea-
sures of efficacy (co-primary endpoints), the study design has to meet even 
more stringent requirements.

When Phase III is done, your team submits all the safety and efficacy data to 
the FDA, which thoroughly reviews it and considers how the benefits com-
pare to the risks. Unless something unexpected comes up, the FDA approves 
the marketing of the drug.

Phase IV: Keeping an eye  
on the marketed drug
Being able to market the drug doesn’t mean you’re out of the woods yet! 
During a drug’s development, you’ve probably given the drug to hundreds or 
thousands of subjects, and no serious safety concerns have been raised. But 
if 1,000 subjects have taken the drug without a single catastrophic adverse 
event, that only means that the rate of these kinds of events is probably less 
than 1 in 1,000. When your drug hits the market, tens of millions of people 
may use it; if the true rate of catastrophic events is, for example, 1 in 2,000, 
then there will be about 5,000 of those catastrophic events in 10 million 
users. (Does the term class action lawsuit come to mind?)
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If the least inkling of possible trouble (or a signal, in industry jargon) is 
detected in all the data from the clinical trials, the FDA is likely to call for 
ongoing monitoring after the drug goes on the market. This process is 
referred to as a risk evaluation mitigation strategy (REMS), and it may entail 
preparing guides for patients and healthcare professionals that describe the 
drug’s risks.

 The FDA also monitors the drug for signs of trouble. Doctors and other health-
care professionals submit information to the FDA on spontaneous adverse 
events they observe in their patients. This system is called the FDA Adverse 
Event Reporting System (FAERS). FAERS has been criticized for relying on vol-
untary reporting, so the FDA is developing a system that will use existing auto-
mated healthcare data from multiple sources.

If a drug is found to have serious side effects, the official package insert may 
have to be changed to include a warning to physicians about the problem. This 
printed warning message is surrounded by a black box for emphasis, and is 
(not surprisingly) referred to as a black-box warning. Such a warning can doom 
a drug commercially, unless it is the only drug available for a serious condition. 
And if really serious problems are uncovered in a marketed drug, the FDA can 
take more drastic actions, including asking the manufacturer to withdraw the 
drug from the market or even reversing its original approval of the drug.

Holding Other Kinds of Clinical Trials
The Phase I, II, and III clinical trials previously described are part of the 
standard clinical testing process for every proposed drug; they’re intended 
to demonstrate that the drug is effective and to create the core of what will 
become an ever-growing body of experience regarding the safety of the 
drug. In addition, you’ll probably carry out several other special-purpose 
clinical trials during drug development. A few of the most common ones are 
described in the following sections.

Pharmacokinetics and pharmacodynamics 
(PK/PD studies)
The term pharmacokinetics (PK) refers to the study of how fast and how 
completely the drug is absorbed into the body (from the stomach and intes-
tines if it’s an oral drug); how the drug becomes distributed through the 
various body tissues and fluids, called body compartments (blood, muscle, 
fatty tissue, cerebrospinal fluid, and so on); to what extent (if any) the drug 
is metabolized (chemically modified) by enzymes produced in the liver and 
other organs; and how rapidly the drug is excreted from the body (usually 
via urine, feces, and other routes).
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The term pharmacodynamics (PD) refers to the study of the relationship 
between the concentration of the drug in the body and the biological and 
physiological effects of the drug on the body or on other organisms (bacteria, 
parasites, and so forth) on or in the body.

 Generations of students have remembered the distinction between PK and PD 
by the following simple description:

 ✓ Pharmacokinetics is the study of what the body does to the drug.

 ✓ Pharmacodynamics is the study of what the drug does to the body.

It’s common during Phase I and II testing to collect blood samples at sev-
eral time points before and after dosing and analyze them to determine the 
plasma levels of the drug at those times. This data is the raw material on 
which PK and PD studies are based. By graphing drug concentration versus 
time, you can get some ballpark estimates of the drug’s basic PK properties: 
the maximum concentration the drug attains (CMax), the time at which this 
maximum occurs (tMax), and the area under the concentration-versus-time 
curve (AUC). And you may also be able to do some rudimentary PD studies 
from this data — examining the relationship between plasma drug concentra-
tions and measurable physiological responses.

But at some point, you may want (or need) to do a more formal PK/PD study 
to get detailed, high-quality data on the concentration of the drug and any of 
its metabolites (molecules produced by the action of your body’s enzymes on 
the original drug molecule) in plasma and other parts of the body over a long 
enough period of time for almost all the drug to be eliminated from the body. 
The times at which you draw blood (and other specimens) for drug assays 
(the so-called sampling time points) are carefully chosen — they’re closely 
spaced around the expected tMax for the drug and its metabolites (based 
on the approximate PK results from the earlier trials) and more spread out 
across the times when nothing of much interest is going on.

A well-designed PK/PD study yields more precise values of the basic PK 
parameters (CMax, tMax, and AUC) as well as more sophisticated PK parameters, 
such as the actual rates of absorption and elimination, information about the 
extent to which the drug is distributed in various body compartments, and 
information about the rates of creation and elimination of drug metabolites.

A PK/PD study also acquires many other measurements that indicate the 
drug’s effects on the body, often at the same (or nearly the same) sampling 
time points as for the PK samples. These PD measurements include:

 ✓ Blood and urine sampling for other chemicals that would be affected 
by the drug: For example, if your drug were a form of insulin, you’d 
want to know glucose concentrations as well as concentrations of other 
chemicals involved in glucose metabolism.
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 ✓ Vital signs: Blood pressure, heart rate, and perhaps rate of breathing.

 ✓ Electrocardiographs (ECGs): Tracings of the heart’s electrical activity.

 ✓ Other physiological tests: Lung function, treadmill, and subjective 
assessments of mood, fatigue, and so on.

Data from PK/PD studies can be analyzed by methods ranging from the very 
simple (noting the time when the highest blood concentration of the drug 
was observed) to the incredibly complex (fitting complicated nonlinear 
models to the concentrations of drug and metabolites in different compart-
ments over time to estimate reaction rate constants, volumes of distribution, 
and more). I describe some of these complex methods in Chapter 21.

Bioequivalence studies
You may be making a generic drug to compete with a brand-name drug 
already on the market whose patent has expired. The generic and brand-
name drug are the exact same chemical, so it may not seem reasonable to 
have to go through the entire drug development process for a generic drug. 
But because there are differences in the other ingredients that go into the 
drug (such as fillers and coatings), you have to show that your formula is 
essentially bioequivalent to the name-brand drug. Bioequivalent means that 
your generic product puts the same (or nearly the same) amount of the 
drug’s active ingredient into the blood as the brand-name product.

A bioequivalence study is usually a fairly simple pharmacokinetic study, 
having either a parallel or a crossover design (see Chapter 5 for more on 
design structure). Each subject is given a dose of the product (either the 
brand-name or generic drug), and blood samples are drawn at carefully 
chosen time points and analyzed for drug concentration. From this data, the 
basic PK parameters (AUC, CMax, and so on) are calculated and compared 
between the brand-name and generic versions. I describe the statistical 
design and analysis of bioequivalence studies in Chapter 16.

Thorough QT studies
In the mid-1900s it was recognized that certain drugs interfered with the ability 
of the heart to “recharge” its muscles between beats, which could lead to a  
particularly life-threatening form of cardiac arrhythmia called Torsades de Points 
(TdP). Fortunately, warning signs of this arrhythmia show up as a distinctive 
pattern on an electrocardiogram (ECG) well before it progresses to TdP.

You’ve seen the typical squiggly pattern of an ECG in movies (usually just 
before it becomes a flat line). Cardiologists have labeled the various peaks 
and dips on an ECG tracing with consecutive letters of the alphabet, from P 
through T, like you see in Figure 6-2.
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Figure 6-2: 
The parts 

of a typical 
ECG trac-
ing of one 
heartbeat.

 
 Illustration by Wiley, Composition Services Graphics

That last bump, called the T-wave, is the one to look at. It depicts the move-
ment of potassium ions back into the cell (called repolarization), getting it 
ready for the next beat. If repolarization is slowed down, the T-wave will be 
stretched out. For various reasons, cardiologists measure that stretching out 
time as the number of milliseconds between the start of the Q wave and the 
end of the T wave; this is called the QT interval.

The QT interval is usually adjusted for heart rate by any of several formulas, 
resulting in a “corrected” QT interval (QTc), which is typically around 400 milli-
seconds (msec). If a drug prolongs QTc by 50 milliseconds or more, things start 
to get dicey. Ideally, a drug shouldn’t prolong QTc by even 10 milliseconds.

Data from all preclinical and human drug trials are closely examined for the 
following so-called signals that the drug may tend to mess up QTc:

 ✓ Any in-silico or in-vitro studies indicate that the drug molecule might 
mess up ion channels in cell membranes.

 ✓ Any ECGs (in animals or humans) show signs of QTc prolongation.

 ✓ Any drugs that are chemically similar to the new drug have produced 
QT prolongation.

If any such signals are found, the FDA will probably require you to conduct a 
special thorough QT trial (called a TQT or QT/QTc trial) to determine whether 
your drug is likely to cause QT prolongation.

A typical TQT may enroll about 100 healthy volunteers and randomize them to 
receive either the new drug, a placebo, or a drug that’s known to prolong QTc 
by a small amount (this is called a positive control, and it’s included so that you 
can make a convincing argument that you’d recognize a QTc prolongation if you 
saw one). ECGs are taken at frequent intervals after administering the product, 
clustered especially close together at the times near the expected maximum con-
centration of the drug and its known metabolites. Each ECG is examined, the QT 
and heart rate are measured, and the QTc is calculated.
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 The statistical analysis of a TQT is similar to that of an equivalence trial (which 
I describe in Chapter 16). You’re trying to show that your drug is equivalent to 
a placebo with respect to QTc prolongation, within some allowable tolerance, 
which the FDA has decreed to be 10 milliseconds. Follow these steps:

 1. Subtract the QTc of the placebo from the QTc for the drug and for the 
positive control at the same time point, to get the amount of QTc pro-
longation at each time point.

 2. Calculate the 90 percent confidence intervals around the QTc prolon-
gation values, as described in Chapter 10.

 3. Plot the average differences, along with vertical bars representing the 
confidence intervals, as shown in Figure 6-3. 

 

Figure 6-3: 
The results 

of a TQT 
study. The 
compara-
tor should 

exceed 
the 10- 

millisecond 
threshold; 

the new 
drug should 

not.
 

 Illustration by Wiley, Composition Services Graphics

To pass the test, the drug’s QTc mean prolongation values and their confidence 
limits must all stay below the 10-millisecond limit. For the positive control drug, 
the means and their confidence limits should go up; in fact, the confidence limits 
should lie completely above 0 (that is, there must be a significant increase) at 
those time points where the control drug is near its peak concentration.
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 Read about two views of probability — the frequentist view and the Bayesian view — 
in an article at www.dummies.com/extras/biostatistics.

http://www.dummies.com/extras/biostatistics


In this part . . .
 ✓ Collect and validate your data, avoiding common pitfalls upfront 

that can cause trouble later on.
 ✓ Summarize your data in informative tables and display it in 

easy-to-understand graphs.
 ✓ Understand the concepts of accuracy and precision. (In a 

nutshell: Accuracy refers to how close a sample statistic tends 
to come to the corresponding population parameter, and 
precision refers to how close replicate values of a sample 
statistic are to each other.)

 ✓ Calculate standard errors and confidence intervals for every-
thing you measure, count, or calculate from your data.



Chapter 7

Getting Your Data into the 
Computer

In This Chapter
▶ Understanding levels of measurement (nominal, ordinal, interval, and ratio)
▶ Defining and entering different kinds of data into your research database
▶ Making sure your data is accurate
▶ Creating a data dictionary to describe the data in your database

B 
efore you can analyze data, you have to collect it and get it into the 
computer in a form that’s suitable for analysis. Chapter 5 describes this 

process as a series of steps — figuring out what data you need and how it’s 
structured, creating the case report forms (CRFs) and computer files to hold 
your data, and entering and validating your data.

In this chapter, I describe a crucially important component of that process — 
storing the data properly in your research data base. Different kinds of data 
can be represented in the computer in different ways. At the most basic level, 
there are numbers and categories, and most of us can immediately tell the 
two apart — you don’t have to be a math genius to recognize age as numeri-
cal data and gender as categorical info.

So why am I devoting a whole chapter to describing, entering, and checking 
different types of data? It turns out that the topic of data type is not quite 
as trivial as it may seem at first — there are some subtleties you should 
be aware of; otherwise, you may wind up collecting your data the wrong 
way and finding out too late that you can’t run the appropriate analysis on it. 
Or you may use the wrong statistical technique and get incorrect or mislead-
ing results. This chapter explains the different levels of measurements, shows 
how to define and enter different types of data, suggests ways to check your 
data for errors, and shows how to formally describe your database so that 
others are able to work with it if you’re not around.
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Looking at Levels of Measurement
Around the middle of the 20th century, the idea of levels of measurement 
caught the attention of biological and social-science researchers, and, in 
particular, psychologists. One classification scheme, which has become very 
widely used (at least in statistics textbooks), recognizes four different levels 
at which variables can be measured: nominal, ordinal, interval, and ratio:

 ✓ Nominal variables are expressed as mutually exclusive categories, like 
gender (male or female), race (white, black, Asian, and so forth), and 
type of bacteria (such as coccus, bacillus, rickettsia, mycoplasma, or 
spirillum), where the sequence in which you list a variable’s different 
categories is purely arbitrary. For example, listing a choice of races as 
black, asian, and white is no more or less “natural” than listing them as 
white, black, and asian.

 ✓ Ordinal data has categorical values (or levels) that fall naturally into a 
logical sequence, like the severity of an adverse event (slight, moderate, 
or severe), or an agreement scale (strongly disagree, disagree, no opin-
ion, agree, or strongly agree), often called a Likert scale. Note that the 
levels are not necessarily “equally spaced” with respect to the concep-
tual difference between levels.

 ✓ Interval data is a numerical measurement where, unlike ordinal data, the 
difference (or interval) between two numbers is a meaningful measure 
of the amount of difference in what the variable represents, but the zero 
point is completely arbitrary and does not denote the complete absence 
of what you’re measuring. An example of this concept is the metric 
Celsius temperature scale. A change from 20 to 25 degrees Celsius repre-
sents the same amount of temperature increase as a change from 120 to 
125 degrees Celsius. But 0 degrees Celsius is purely arbitrary — it does 
not represent the total absence of temperature; it’s simply the tempera-
ture at which water freezes (or, if you prefer, ice melts).

 ✓ Ratio data, unlike interval data, does have a true zero point. The numeri-
cal value of a ratio variable is directly proportional to how much there is 
of what you’re measuring, and a value of zero means there’s nothing at 
all. Mass is a ratio measurement, as is the Kelvin temperature scale — it 
starts at the absolute zero of temperature (about 273 degrees below zero 
on the Celsius scale), where there is no thermal energy at all.

 Statisticians tend to beat this topic to death — they love to point out cases 
that don’t fall neatly into one of the four levels and to bring up various coun-
terexamples. But you need to be aware of the concepts and terminology in 
the preceding list because you’ll see them in statistics textbooks and articles, 
and because teachers love to include them on tests. And, more practically, 
knowing the level of measurement of a variable can help you choose the 
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most appropriate way to analyze that variable. I make reference to these four 
levels — nominal, ordinal, interval, and ratio — at various times in this chap-
ter and in the rest of this book.

Classifying and Recording  
Different Kinds of Data

Although you should be aware of the four levels of measurement described in 
the preceding section, you also need to be able to classify and deal with data 
in a more pragmatic way. The following sections describe various common 
types of data you’re likely to encounter in the course of biological or clinical 
research. I point out some things you need to think through before you start 
collecting your data.

 Few things can mess up a research database, and quite possibly doom a study 
to eventual failure, more surely than bad decisions (or no decisions) about 
how to represent the data elements that make up the database. If you collect 
data the wrong way, it may take an enormous amount of additional effort to go 
back and get it the right way, if you can retrieve the right data at all.

Dealing with free-text data
 It’s best to limit free-text variables to things like subject comments or write-in 

fields for Other choices in a questionnaire — basically, only those things where 
you need to record verbatim what someone said or wrote. Don’t use free-text 
fields as a lazy-person’s substitute for what should be precisely defined cat-
egorical data (which I discuss later in this chapter). Doing any meaningful sta-
tistical analysis of free-text fields is generally very difficult, if not impossible.

You should also be aware that most software has field-length limitations for 
text fields. Current versions of Excel, SPSS, SAS, and so on have very high 
limits, but other programs (or earlier versions of these programs) may have 
much lower limits (perhaps 63, 255, or 1,023 characters). Flip to Chapter 4 for 
an introduction to statistical software.

Assigning subject identification 
 (ID) numbers
Every subject in your study should have a unique Subject Identifier (or ID), 
which is used for recording information, for labeling specimens sent to labs 



96 Part II: Getting Down and Dirty with Data 

for analysis, and for collecting all a subject’s information in the database. In 
a single-site study (one that is carried out at only one geographical location), 
this ID can usually be a simple number, two to four digits long. It doesn’t 
have to start at 1; it can start at 100 if you want all the ID numbers to be three 
digits long without leading zeros. In multi-site studies (those carried out at 
several locations, such as different institutions, different clinics, different 
doctors’ offices, and so on), the number often has two parts — a site number 
and a subject-within-site number, separated by a hyphen, such as 03-104.

Organizing name and address data
 A research database usually doesn’t need to have the full name or the address 

of the subject, and sometimes these data elements are prohibited for privacy 
reasons. But if you do need to store a name (if you anticipate generating mailings 
like appointment reminders or follow-up letters, for example), use one of the fol-
lowing formats so that you can easily sort subjects into alphabetical order:

 ✓ A single variable: Last, First Middle (like Smith, John A)

 ✓ Two columns: One for Last, another for First and Middle

You may also want to include separate fields to hold prefixes (Mr., Mrs., Dr., 
and so on) and suffixes (Jr., III, PhD, and so forth).

Addresses should be stored in separate fields for street, city, state (or prov-
ince), ZIP code (or comparable postal code), and perhaps country.

Collecting categorical data
Setting up your data collection forms and database tables for categorical data 
requires more thought than you may expect. Everyone assumes he knows 
how to record and enter categorical data — you just type what that data is 
(for example, Male, White, Diabetes, or Headache), right? Bad assumption! 
The following sections look at some of the issues you have to deal with.

Carefully coding categories
The first issue is how to “code” the categories (how to represent them in the 
database). Do you want to enter Gender as Male/Female, M/F, 1 (if male) or 
2 (if female), or in some other manner? Most modern statistical software can 
analyze categorical data with any of these representations, but some older 
software needs the categories coded as consecutive numbers: 1, 2, 3, and so 
on. Some software lets you specify a correspondence between number and 
text (1=Male, 2=Female, for instance); then you can type it in either way, and 
you can choose to display it in either the numeric or textual form.
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 Nothing is worse than having to deal with a data set in which Gender has been 
coded as 1 or 2, with no indication of which is which, when the person who 
created the file is long gone. So it’s probably best to enter the category values 
as short, meaningful text abbreviations like M or F, or Male or Female, which 
are self-evident and, therefore, self-documenting.

 Excel doesn’t care what you type in, and this characteristic is one of its biggest 
drawbacks when it’s used as a data repository. You can enter Gender as M for 
the first subject, Male for the second, male for the third, 2 for the fourth, and m 
for the fifth, and Excel couldn’t care less. But most statistics programs consider 
each of these to be a completely different category! Even worse, you may inad-
vertently type one or more blank spaces before and/or after the text. You may 
never notice it, but some statistics programs consider M~ to be different from 
~M, ~M~, and M~~. (I use ~ to stand for a blank space.) Therefore, in Excel, it’s 
a good idea to enable AutoComplete for cell values (in the Advanced section of 
the Options dialog box, located in the File menu). Then when you start typing 
something in a cell, it suggests something that’s already present in that column 
and begins with the same letter or letters that you typed.

Dealing with more than two levels in a category
When a categorical variable has more than two levels (like the bacteria type 
or Likert agreement scale examples I describe in the earlier section “Looking 
at Levels of Measurement”), things get even more interesting. First, you have 
to ask yourself, “Is this variable a Choose only one or Choose all that apply 
variable?” The coding is completely different for these two kinds of multiple-
choice variables.

You handle the Choose only one situation just as I describe for Gender in the 
preceding section — you establish a short, meaningful alphabetic code for 
each alternative. For the Likert scale example, you could have a categorical 
variable called Attitude, with five possible values: SD (strongly disagree), D 
(disagree), NO (no opinion), A (agree), and SA (strongly agree). And for the 
bacteria type example, if only one kind of bacteria is allowed to be chosen, 
you can have a categorical variable called BacType, with five possible values: 
coccus, bacillus, rickettsia, mycoplasma, and spirillum. (Or even better, to 
reduce the chance of misspellings, you can use short abbreviations such as: 
coc, bac, ric, myc, and spi.)

But things are quite different if the variable is Choose all that apply. For the 
bacteria types example, if several types of bacteria can be present in the 
same specimen, you have to set up your database differently. Define separate 
 variables in the database (separate columns in Excel) — one for each pos-
sible category value. So you have five variables, perhaps called BTcoc, BTbac, 
BTric, BTmyc, and BTspi (the BT stands for bacteria type). Each variable is a 
two-value category (perhaps with values Pres/Abs — which stand for present 
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and absent — or Yes/No, or 1 or 0). So, if Subject 101’s specimen has coccus, 
Subject 102’s specimen has bacillus and mycoplasma, and Subject 103’s 
specimen has no bacteria at all, the information can be coded as shown in 
the following table.

Subject BTcoc BTbac BTric BTmyc BTspi
101 Yes No No No No
102 No Yes No Yes No
103 No No No No No

You can handle missing values by leaving the cell blank, but an even better 
way is to add a category called Missing to the regular categories of that vari-
able. If you need several different flavors of Missing (like not collected yet, 
don’t know, other, refused to answer, or not applicable), just add them to the 
set of permissible levels for that categorical variable. The idea is to make 
sure that you can always enter something for that variable.

 Never try to cram multiple choices into one column — don’t enter coc,bac into 
a cell in the BacType column. If you do, the resulting column will be almost 
impossible to analyze statistically, and you’ll have to take the time later to 
painstakingly split your single multi-valued column into separate yes/no col-
umns as I describe earlier. So why not do it right the first time?

Recording numerical data
 For numerical data, the main question is how much precision to record. 

Recording a numerical variable to as many decimals as you have available is 
usually best. For example, if a scale can measure body weight to the nearest 
1/10 of a kilogram, record it in the database to that degree of precision. You 
can always round off to the nearest kilogram later if you want, but you can 
never “unround” a number to recover digits you didn’t record. Just don’t go 
overboard in this direction — don’t record a person’s weight as 85.648832 
kilograms, even if a digital scale shows it to such ridiculous precision.

Along the same lines, don’t group numerical data into intervals when record-
ing it. Don’t record Age in 10-year intervals (0 to 9, 10 to 19, and so on) if you 
know the age to the nearest year. You can always have the computer do that 
kind of grouping later, but you can never recover the age in years if all you 
record is the decade.

Some programs let you choose between several ways of storing the number 
in the computer. The program may refer to these different storage modes 
using arcane terms for short, long, or very long integers (whole numbers) or 
single-precision (short) or double-precision (long) floating point (fractional) 
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numbers. Each type has its own limits, which may vary from one program 
to another or from one kind of computer to another. For example, a short 
integer might be able to represent only whole numbers within the range from 
–32,768 to +32,767, whereas a double-precision floating-point number could 
easily handle a number like 1.23456789012345 × 10250. In the old days, the judi-
cious choice of storage modes for your variables could produce smaller files 
and let the program work with more subjects or more variables. Nowadays, 
storage is much less of an issue than it used to be, so pinching pennies this 
way offers little benefit. Go for the most general numeric representation 
available — usually double-precision floating point, which can represent just 
about any number you may ever encounter in your research.

 Here are a couple things to watch out for with numerical variables in Excel:

 ✓ Don’t put two numbers (such as a blood pressure reading of 135/85 
mmHg) into one column of data. Excel won’t complain about it, but it will 
treat it as text because of the embedded “/”, rather than as numerical 
data. Instead, create two separate variables — such as the systolic and 
diastolic pressures (perhaps called BPS for blood pressure systolic and BPD 
for blood pressure diastolic) — and enter each number into the appropri-
ate variable.

 ✓ In an obstetrical database, don’t enter 6w2d for a gestational age of 
6 weeks and 2 days; even worse, don’t enter it as 6.2, which the com-
puter would interpret as 6.2 weeks. Either enter it as 44 days, or create 
two variables (perhaps GAwks for gestational age weeks and GAdays 
for gestational age days), to hold the values 6 and 2, respectively. The 
computer can easily combine them later into the number of days or the 
number of weeks (and fractions of a week).

 Missing numerical data requires a little more thought than missing categorical 
data. Some researchers use 99 (or 999, or 9999) to indicate a missing value. 
If you use that technique, all your analyses will have to ignore those values. 
Fortunately, many statistics programs let you specify what the missing value 
indicator is for each variable, and the programs exclude those values from all 
analyses. But can you really be sure you’ll never have that value pop up as a 
real value for some very atypical subject? (Some people are 99 years old, and 
some people can have a blood glucose value of 999 mg/dL). Simply leaving the 
cell blank may be best; almost all programs treat blank cells as missing data.

Entering date and time data
Now I’m going to tell you something that sounds like I’m contradicting the 
advice I just gave you (but, of course, I’m not!). Most statistical software can 
represent dates and times as a single variable (an “instant” on a continuous 



100 Part II: Getting Down and Dirty with Data 

timeline), so take advantage of that if you can — enter the date and time as one 
variable (for example, 07/15/2010 08:23), not as a date variable and a time vari-
able. This method is especially useful when dealing with events that take place 
over a short time interval (like events occurring during labor and delivery).

 Most statistical programs store date and time internally as a number, speci-
fying the number of days (and fractions of days) from some arbitrary “zero 
date.” Here are the zero dates for a few common programs:

 ✓ Excel: Midnight at the start of December 31, 1899 (this is also the earli-
est date that Excel can store). So November 21, 2012, at 6:00 p.m., is 
stored internally as 41,234.75 (the .75 is because 6 p.m. is 3/4 of the way 
through that day).

 ✓ SPSS: October 14, 1582 (the date the Gregorian calendar was adopted to 
replace the Julian calendar).

 ✓ SAS: 01/01/1960 (a totally arbitrary date).

Some programs may store a date and time as a Julian Date, whose zero 
occured at noon, Greenwich mean time, on Jan. 1, 4713 BC. (Nothing hap-
pened on that date; it’s purely a numerical convenience. See www.magma.
ca/~scarlisl/DRACO/julian_d.html for an interesting account of this.)

 What if you don’t know the day of the month? This happens a lot with medical 
history items; you hear something like “I got the flu in September 2004.” Most 
software insists that a date variable be a complete date and won’t accept just 
a month and a year. In this case, an argument can be made for setting the day 
to 15 (around mid-month), on the grounds that the error is equally likely to be 
on either side and therefore tends to cancel out, on average. Similarly, if both 
the month and day are missing, you can set them to June 30 or July 1 (around 
mid-year) to achieve the same kind of average error cancellation. If only some 
records have partial dates, you may want to create another variable to indi-
cate whether the date is complete or partial, so you can tell, if you need to, 
whether 09/15/2004 really means September 15, 2004, or just September 2004.

Completely missing dates should usually just be left blank; most statistical 
software treats blank cells as missing data.

 Because of the way most statistics programs store dates and times, they can 
easily calculate intervals between any two points in time by simple subtraction. 
So it’s usually easier and safer to enter dates and times and let the computer 
calculate the intervals than to calculate them yourself. For example, if you 
create variables for date of birth (DOB) and a visit date (VisDt) in Excel, you 
can often calculate a very accurate age at the time of the visit with this formula:

Age = (VisDt – DOB)/365.25

http://www.magma.ca/~scarlisl/DRACO/julian_d.html
http://www.magma.ca/~scarlisl/DRACO/julian_d.html
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Similarly, in cancer studies, you can easily and accurately calculate intervals 
from diagnosis or treatment to remission and recurrence, as well as total sur-
vival time, from the dates of the corresponding events.

Checking Your Entered Data for Errors
 After you’ve entered all your data into the computer, there are a few things 

you can do to check for errors:

 ✓ Examine the smallest and largest values: Have the software show you 
the smallest and largest values for each variable. This check can often 
catch decimal-point errors (such as a hemoglobin value of 125 g/dL 
instead of 12.5 g/dL) or transposition errors (for example, a weight of 
517 pounds instead of 157 pounds).

 ✓ Sort the values of variables: If your program can show you a sorted list 
of all the values for a variable, that’s even better — it often shows mis-
spelled categories as well as numerical outliers.

 ✓ Search for blanks and commas: You can have Excel search for blanks 
in category values that shouldn’t have blanks or for commas in numeric 
variables. Make sure the “Match entire cell contents” option is dese-
lected in the Find and Replace dialog box (you may have to click the 
Options button to see the check box).

 ✓ Tabulate categorical variables: You can have your statistics program 
tabulate each categorical variable (showing you how many times each 
different category occurred in your data). This check usually finds mis-
spelled categories.

 ✓ Shrink a spreadsheet’s cells: If you have the PopTools add-in installed 
in Excel (see Chapter 4), you can use the “Make a map of current sheet” 
feature, which creates a new worksheet with a miniature view of your 
data sheet. Each cell in the map sheet is shrunk down to a small square 
and is color-coded to indicate the type of data in the cell — character, 
numeric, formula, or blank. With this view, you can often spot typing 
errors that have turned a numeric variable into text (like a comma 
instead of a decimal point, or two decimal points).

Chapter 8 describes some other ways you can check for unreasonable data.
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Creating a File that Describes  
Your Data File

Every research database, large or small, simple or complicated, should be 
accompanied by a data dictionary that describes the variables contained in 
the database. It will be invaluable if the person who created the database 
is no longer around. A data dictionary is, itself, a data file, containing one 
record for every variable in the database. For each variable, the dictionary 
should contain most of the following information (sometimes referred to as 
metadata, which means “data about data”):

 ✓ A short variable name (usually no more than eight or ten characters) 
that’s used when telling the software what variables you want it to use 
in an analysis

 ✓ A longer verbal description of the variable (up to 50 or 100 characters)

 ✓ The type of data (text, categorical, numerical, date/time, and so on)

	 •	If numeric: Information about how that number is displayed (how 
many digits are before and after the decimal point)

	 •	If date/time: How it’s formatted (for example, 12/25/13 10:50pm or 
25Dec2013 22:50)

	 •	If categorical: What the permissible categories are

 ✓ How missing values are represented in the database (99, 999, “NA,” and 
so on)

Many statistical packages allow (or require) you to specify this information 
when you’re creating the file anyway, so they can generate the data diction-
ary for you automatically. But Excel lets you enter anything anywhere, with-
out formally defining variables, so you need to create the dictionary yourself 
(perhaps as another worksheet — which you can call “Data Dictionary” — in 
the same Excel file that has the data, so that the data dictionary always stays 
with the data). 



Chapter 8

Summarizing and Graphing  
Your Data

In This Chapter
▶ Representing categorical data
▶ Characterizing numerical variables
▶ Putting numerical summaries into tables
▶ Displaying numerical variables with bars and graphs

A 
 large study can involve thousands of subjects, hundreds of different  
variables, and millions of individual pieces of data. Even a small 

research project normally generates much more data than you can (or would 
want to) put into a publication or report. Instead, you need to boil the  
individual values for each variable down to a few numbers, called summary 
statistics, that give readers an idea of what the whole collection of numbers 
looks like — that is, how they’re distributed.

When presenting your results, you may want to arrange these summary  
statistics into tables that describe how the variables change over time or 
differ between treatments, or how two or more variables are related to each 
other. And, because a picture really is worth a thousand words, you probably 
want to display these distributions, changes, differences, and relationships 
graphically.

In this chapter, I show you how to summarize and graph two types of data: 
categorical and numerical. Note: This chapter doesn’t cover time-to-event 
(survival) data. That topic is so important, and the methods for summarizing 
and charting survival data are so specialized, that I describe them in a  
chapter all their own — Chapter 22.
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Summarizing and Graphing  
Categorical Data

A categorical variable is summarized in a fairly straightforward way. You just 
tally the number of subjects in each category and express this number as a 
count — and perhaps also as a percentage of the total number of subjects 
in all categories combined. So, for example, a sample of 422 subjects can be 
summarized by race, as shown in Table 8-1.

Table 8-1 Study Subjects Categorized by Race
Race Count Percent of Total
White 128 30.3%
Black 141 33.4%
Asian 70 16.6%
Other 83 19.7%
Total 422 100%

The joint distribution of subjects between two categorical variables (such as 
Race by Gender), is summarized by a cross-tabulation (“cross-tab”), as shown 
in Table 8-2.

Table 8-2 Cross-Tabulation of Subjects by  
 Two Categorical Variables

White Black Asian Other Total
Male 60 60 34 42 196
Female 68 81 36 41 226
Total 128 141 70 83 422

A cross-tab can get very cluttered if you try to include percentages. And 
there are three different kinds of percentage for each count in a cross-tab. 
For example, the 60 white males in Table 8-2 comprise 46.9 percent of all 
white subjects, 30.6 percent of all males, and 14.2 percent of all subjects.
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Categorical data is usually displayed graphically as frequency bar charts and 
as pie charts:

 ✓ Frequency bar charts: Displaying the spread of subjects across the dif-
ferent categories of a variable is most easily done by a bar chart (see 
Figure 8-1a). To create a bar chart manually from a tally of subjects in 
each category, you draw a graph containing one vertical bar for each 
category, making the height proportional to the number of subjects in 
that category. But almost all statistical programs will prepare bar charts 
for you; you simply select the options you want, such as which categori-
cal variable you want to display and whether you want the vertical axis 
to show counts or percent of total.

 ✓ Pie charts: Pie charts indicate the relative number of subjects in each 
category by the angle of a circular wedge (a piece of the pie). To create 
a pie chart manually, you multiply the percent of subjects in each cat-
egory by 360 (the number of degrees of arc in a full circle), and then 
divide by 100. You draw a circle with a compass and then split it up into 
wedges using a protractor (remember those drawing tools from high 
school?). Much better to have the computer make a pie chart for you — 
it’s no more difficult than having a program make a bar chart.

  But comparing the relative magnitude of the different sections of a pie 
chart is more difficult than comparing bar heights. Can you tell at a 
glance from Figure 8-1b whether there are more whites or blacks? Or 
more Asians than “others”? You can make those distinctions immedi-
ately from Figure 8-1a. Pie charts are often used to present data to the 
public (perhaps because the “piece of the pie” metaphor is so intuitive), 
but they’re frowned upon in technical publications.

  Many programs let you generate so-called “3D” charts. However, these 
charts are often drawn with a slanting perspective that renders them 
almost impossible to interpret, so avoid 3D charts when presenting your 
data.

 

Figure 8-1: 
A simple 
bar chart 

(a) and pie 
chart (b).

  Illustration by Wiley, Composition Services Graphics
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Summarizing Numerical Data
Summarizing a numerical variable isn’t as simple as summarizing a categorical 
variable. The summary statistics for a numerical variable should convey, 
in a concise and meaningful way, how the individual values of that variable 
are distributed across your sample of subjects, and should give you some 
idea of the shape of the true distribution of that variable in the population 
from which you draw your sample. That true distribution can have almost 
any shape, including the typical shapes shown in Figure 8-2: normal, skewed, 
pointy-topped, and bimodal (two-peaked).

 

Figure 8-2: 
Four differ-
ent shapes 

of distri-
butions: 

normal (a), 
skewed 

(b), pointy-
topped (c), 

and bimodal 
(two-

peaked) (d).
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How can you convey a general picture of what the true distribution may 
be using just a few summary numbers? Frequency distributions have some 
important characteristics, including:

 ✓ Center: Where do the numbers tend to center?

 ✓ Dispersion: How much do the numbers spread out?

 ✓ Symmetry: Is the distribution shaped the same on the left and right 
sides, or does it have a wider tail on one side than the other?

 ✓ Shape: Is the top of the distribution nicely rounded, or pointier or flatter?

You need to come up with numbers that measure each of these four charac-
teristics; the following sections give you the scoop. (I explain how to graph 
numerical data later in this chapter.)



107 Chapter 8: Summarizing and Graphing Your Data

Locating the center of your data
Perhaps the most important single thing you want to know about a set 
of numbers is what value they tend to center around. This characteristic 
is called, intuitively enough, central tendency. Many statistical textbooks 
describe three measures of central tendency: mean, median, and mode. These 
measures don’t make a particularly good “top-three” list when it comes to 
describing experimental data because such a list omits several measures 
that are quite useful and important, and includes one that’s pretty lousy, as I 
explain in the following sections.

Arithmetic mean
The arithmetic mean, also commonly called the mean, or the average, is the 
most familiar and most often quoted measure of central tendency. Throughout 
this book, whenever I use the two-word term the mean, I’m referring to the 
arithmetic mean. (There are several other kinds of means, besides the arithme-
tic mean, and I describe them later in this chapter.)

 The mean of a sample is often denoted by the symbol m or by placing a 
horizontal bar over the name of the variable, like . The mean is obtained 
by adding up the values and dividing by how many there are. Here’s a small 
sample of numbers — the IQ values of seven subjects, arranged in increasing 
numerical order: 84, 84, 89, 91, 110, 114, and 116. For the IQ sample:

Arithmetic Mean = ( 84 + 84 + 89 + 91 + 110 + 114 + 116 )/7  
= 688/7 = 98.3 (approximately)

You can write the general formula for the arithmetic mean of N number of 
values contained in the variable X in several ways:

See Chapter 2 for a refresher on mathematical notation and formulas, including 
how to interpret the various forms of the summation symbol Σ (the Greek 
capital sigma). In the rest of this chapter, I use the simplest form (without the 
i subscripts that refer to specific elements of an array) whenever possible.

Median
Like the mean (see the preceding section), the median is a common measure 
of central tendency (and, in fact, is the only one that really takes the word 
central seriously). 
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 The median of a sample is the middle value in the sorted (ordered) set of num-
bers. Half the numbers are smaller than the median, and half of them are 
larger. The median of a population frequency distribution function (like the 
curves shown in Figure 8-2) divides the total area under the curve into two 
equal parts: half of the area under the curve (AUC) lies to the left of the 
median, and half lies to the right.

The median of the IQ sample from the preceding section (84, 84, 89, 91, 110, 
114, and 116) is the fourth of the seven sorted values, which is 91. Three IQs 
in the sample are smaller than 91, and three are larger than 91. If you have an 
even number of values, the median is the average of the two middle values.

The median is much less strongly influenced by extreme outliers than the 
mean. For example, if the largest value in the IQ example had been 150 instead 
of 116, the mean would have jumped from 98.3 to 103.1, but the median would 
have remained unchanged at 91. Here’s an even more extreme example: If a 
multibillionaire were to move into a certain state, the mean family net worth 
in that state might rise by hundreds of dollars, but the median family net 
worth would probably rise by only a few cents (if it were to rise at all).

Mode
 The mode of a sample of numbers is the most frequently occurring value 

in the sample. The mode is, quite frankly, of very little use for summarizing 
observed values for continuous numerical variables, for several reasons:

 ✓ If the data were truly continuous (and recorded to many decimal 
places), there would probably be no exact duplicates, and there would 
be no mode for the sample.

 ✓ Even when dealing with data that’s rounded off to fairly coarse intervals, 
the mode may not be anywhere near the “center” of the data. In the IQ 
example, the only value that occurs more than once happens to be the 
lowest value (84), which is a terrible indicator of central tendency.

 ✓ There could be several different values in your data that occur multiple 
times, and therefore several modes.

So the mode is not a good summary statistic for sampled data. But it’s very 
useful for characterizing a population distribution. It’s the place where the 
peak of the distribution function occurs. Some distribution functions can 
have two peaks (a bimodal distribution), as shown in Figure 8-3d, which  
often indicates two distinct subpopulations, such as the distribution of a sex 
hormone in a mixed population of males and females. Some variables can 
have a distribution with three or even more peaks in certain populations.

Considering some other “means” to measure central tendency
Several other kinds of means are useful measures of central tendency in 
certain circumstances. They’re called means because they all involve the 
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same “add them up and divide by how many” process as the arithmetic mean 
(which I describe earlier in this chapter), but each one adds a slightly differ-
ent twist to the basic process.

Inner mean
 The inner mean (also called the trimmed mean) of N numbers is calculated by 

removing the lowest value and the highest value and calculating the arithme-
tic mean of the remaining N – 2 “inner” values. For the IQ example that I use 
earlier in this chapter (84, 84, 89, 91, 110, 114, and 116), the inner mean equals 
(84 + 89 + 91 + 110 + 114)/5 = 488/5 = 97.6.

An even “inner-er” mean can be calculated by dropping the two (or more) 
highest and two (or more) lowest values from the data and then calculating 
the arithmetic mean of the remaining values. In the interest of fairness, you 
should always chop the same number of values from the low end as from the 
high end.

Like the median (which I discuss earlier in this chapter), the inner mean 
is more resistant to outliers than the arithmetic mean. And, if you think 
about it, if you chop off enough numbers from both ends of the sorted set of 
values, you’ll eventually be left with only the middle one or two values — this 
 “inner-est” mean would actually be the median!

Geometric mean
 The geometric mean (often abbreviated GM) can be defined by two different-

looking formulas that produce exactly the same value. The basic definition has 
this formula:

I describe the product symbol Π (the Greek capital pi) in Chapter 2. This for-
mula is telling you to multiply the values of the N observations together, and 
then take the Nth root of the product. The IQ example (84, 84, 89, 91, 110, 114, 
and 116) looks like this:

This formula can be difficult to evaluate; even computers can run into trouble 
with the very large product that calculating the GM of a lot of numbers can 
generate. By using logarithms (which turn multiplications into additions and 
roots into divisions), you get a “numerically stable” alternative formula:

This formula may look complicated, but it really just says, “The geometric 
mean is the antilog of the mean of the logs of the numbers.” You take the log 
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of each number, average all those logs the usual way, and then take the anti-
log of the average. You can use natural or common logarithms; just be sure to 
use the same type of antilog. (Flip to Chapter 2 for the basics of logarithms.)

Root-mean-square
 The root-mean-square (RMS) of a bunch of numbers is defined this way:

You square each number, average all those squares the usual way, and then 
take the square root of the average. For example, the RMS of the two num-
bers 10 and 20 is . The RMS is 
useful for summarizing the size of random fluctuations, as you see in the later 
section “Standard deviation, variance, and coefficient of variation.”

Describing the spread of your data
After central tendency (see the previous sections), the second most impor-
tant thing you can say about a set of numbers is how tightly or loosely they 
tend to cluster around a central value; that is, how narrowly or widely they’re 
dispersed. There are several common measures of dispersion, as you find out 
in the following sections.

Standard deviation, variance, and coefficient of variation
The standard deviation (usually abbreviated SD, sd, or just s) of a bunch of 
numbers tells you how much the individual numbers tend to differ (in either 
direction) from the mean (which I discuss earlier in this chapter). It’s calcu-
lated as follows:

 This formula is saying that you calculate the standard deviation of a set of N 
numbers (Xi) by subtracting the mean from each value to get the deviation (di) 
of each value from the mean, squaring each of these deviations, adding up the 

 terms, dividing by N – 1, and then taking the square root.

 This is almost the formula for the root-mean-square deviation of the points 
from the mean, except that it has N – 1 in the denominator instead of N. This 
difference occurs because the sample mean is used as an approximation of 
the true population mean (which you don’t know). If the true mean were avail-
able to use, the denominator would be N.
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When talking about population distributions, the SD describes the width of 
the distribution curve. Figure 8-3 shows three normal distributions. They all 
have a mean of zero, but they have different standard deviations and, there-
fore, different widths. Each distribution curve has a total area of exactly 1.0, 
so the peak height is smaller when the SD is larger.

 

Figure 8-3: 
Three dis-
tributions 

with the 
same mean 

but different 
standard 

deviations.
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For the IQ example that I use earlier in this chapter (84, 84, 89, 91, 110, 114, 
and 116) where the mean is 98.3, you calculate the SD as follows:

Standard deviations are very sensitive to extreme values (outliers) in the 
data. For example, if the highest value in the IQ dataset had been 150 instead 
of 116, the SD would have gone up from 14.4 to 23.9.

Several other useful measures of dispersion are related to the SD:

 ✓ Variance: The variance is just the square of the SD. For the IQ example, 
the variance = 14.42 = 207.36.

 ✓ Coefficient of variation: The coefficient of variation (CV) is the SD divided 
by the mean. For the IQ example, CV = 14.4/98.3 = 0.1465, or 14.65 percent.

Range
 The range of a set of values is the difference between the smallest value (the 

minimum value) and the largest value (the maximum value):

Range = maximum value – minimum value
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So for the IQ example in the preceding section (84, 84, 89, 91, 110, 114, and 
116), the minimum value is 84, the maximum value is 116, and the range is 32 
(equal to 116 – 84).

The range is extremely sensitive to outliers. If the largest IQ were 150 instead 
of 116, the range would increase from 32 to 66 (equal to 150 – 84).

 Outside of its formal definition in statistics, the term range can also refer to 
two numbers marking the limits of some interval of interest. For example, sup-
pose that a clinical trial protocol (see Chapter 5) specifies that you’re to enroll 
only subjects having glucose values within the range 150 to 250 milligrams 
per deciliter. You may ask whether a subject with a value of exactly 250 falls 
“within” that range. This possible ambiguity is usually avoided by using the 
term inclusive or exclusive to specify whether a person who is exactly at the 
limit of a range is considered within it or not. Some ranges can be inclusive at 
one end and exclusive at the other end.

Centiles
The basic idea of the median (that half of your numbers are less than the 
median) can be extended to other fractions besides 1⁄2.

 A centile is a value that a certain percentage of the values are less than. For 
example, 1⁄4 of the values are less than the 25th centile (and 3⁄4 of the values 
are greater). The median is just the 50th centile. Some centiles have common 
nicknames:

 ✓ The 25th, 50th, and 75th centiles are called the first, second, and third 
quartiles, respectively.

 ✓ The 20th, 40th, 60th, and 80th centiles are called quintiles.

 ✓ The 10th, 20th, 30th, and so on, up to the 90th centile, are called deciles.

 ✓ Other Latin-based nicknames include tertiles, sextiles, and so forth.

As I explain in the earlier section “Median,” if the sorted sequence has no 
middle value, you have to calculate the median as the average of the two 
middle numbers. The same situation comes up in calculating centiles, but it’s 
not as simple as just averaging the two closest numbers; there are at least 
eight different formulas for estimating centiles. Your statistical software may 
pick one of the formulas (and may not tell you which one it picked), or it may 
let you choose the formula you prefer. Fortunately, the different formulas 
usually give nearly the same result.

 The inter-quartile range (or IQR) is the difference between the 25th and 75th 
centiles (the first and third quartiles). When summarizing data from strangely 
shaped distributions, the median and IQR are often used instead of the mean 
and SD.
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Showing the symmetry and  
shape of the distribution
In the following sections, I discuss two summary statistical measures that are 
used to describe certain aspects of the symmetry and shape of the distribution 
of numbers.

Skewness
Skewness refers to whether the distribution has left-right symmetry (as 
shown in Figures 8-2a and 8-2c) or whether it has a longer tail on one side or 
the other (as shown in Figures 8-2b and 8-2d). Many different skewness coef-
ficients have been proposed over the years; the most common one, often rep-
resented by the Greek letter γ (lowercase gamma), is calculated by averaging 
the cubes (third powers) of the deviations of each point from the mean and 
scaling by the standard deviation. Its value can be positive, negative, or zero.

 A negative skewness coefficient (γ) indicates left-skewed data (long left tail); 
a zero γ indicates unskewed data; and a positive γ indicates right-skewed data 
(long right tail), as shown in Figure 8-4.

 

Figure 8-4: 
Distributions 
can be left-
skewed (a), 
symmetric 
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skewed (c).
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Of course, the skewness coefficient for any set of real data almost never 
comes out to exactly zero because of random sampling fluctuations. So how 
large does γ have to be before you suspect real skewness in your data? A very 
rough rule of thumb for large samples is that if γ is greater than , your 
data is probably skewed.

Kurtosis
The three distributions shown in Figure 8-5 happen to have the same mean 
and the same standard deviation, and all three have perfect left-right sym-
metry (that is, they are unskewed). But their shapes are still very different. 
Kurtosis is a way of quantifying these differences in shape.
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 If you think of a typical distribution function curve as having a “head” (near 
the center), “shoulders” (on either side of the head), and “tails” (out at the 
ends), the term kurtosis refers to whether the distribution curve tends to have

 ✓ A pointy head, fat tails, and no shoulders (leptokurtic, κ < 3, as shown in 
Figure 8-5a)

 ✓ Normal appearance (κ = 3; see Figure 8-5b)

 ✓ Broad shoulders, small tails, and not much of a head (platykurtic, κ > 3, 
as shown in Figure 8-5c)

The Pearson kurtosis index, often represented by the Greek letter κ (lower-
case kappa), is calculated by averaging the fourth powers of the deviations 
of each point from the mean and scaling by the standard deviation. Its value 
can range from 1 to infinity and is equal to 3.0 for a normal distribution. The 
excess kurtosis is the amount by which κ exceeds (or falls short of) 3. A very 
rough rule of thumb for large samples is that if κ differs from 3 by more than 

, your data probably has abnormal kurtosis.

 

Figure 8-5: 
Three dis-
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Structuring Numerical Summaries  
into Descriptive Tables

Now you know how to calculate the basic summary statistics that convey a 
general idea of how a set of numbers is distributed. So what do you do with 
those summary numbers? Generally, when presenting your results, you pick 
a few of the most useful summary statistics and arrange them in a concise 
way. Many biostatistical reports select N, mean, SD, median, minimum, and 
maximum, and arrange them something like this:

mean ± SD (N)

median (minimum – maximum)
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For the IQ example that I use earlier in this chapter (84, 84, 89, 91, 110, 114, 
and 116), the preceding arrangement looks like this:

98.3 ± 14.4 (7)

91 (84 – 116)

The real utility of this kind of compact summary is that you can place it in 
each cell of a table to show changes over time and between groups. For 
example, systolic blood pressure measurements, before and after treatment 
with a hypertension drug or a placebo, can be summarized very concisely, as 
shown in Table 8-3.

Table 8-3 Systolic Blood Pressure Treatment Results
Drug Placebo

Before Treatment 138.7 ± 10.3 (40) 
139.5 (117 – 161)

141.0 ± 10.8 (40) 
143.5 (111 – 160)

After Treatment 121.1 ± 13.9 (40) 
121.5 (85 – 154)

141.0 ± 15.4 (40) 
142.5 (100 – 166)

Change –17.6 ± 8.0 (40) 
–17.5 (–34 – 4)

–0.1 ± 9.9 (40) 
1.5 (–25 – 18)

This table shows that the drug tended to lower blood pressure by about 
18 millimeters of mercury (mmHg), from 139 to 121, whereas the placebo 
produced no noticeable change in blood pressure (it stayed around 141 
mmHg). All that’s missing are some p values to indicate the significance of 
the changes over time within each group and of the differences between the 
groups. I show you how to calculate those in Chapter 12.

Graphing Numerical Data
Displaying information graphically is a central part of interpreting and com-
municating the results of scientific research. You can easily spot subtle fea-
tures in a graph of your data that you’d never notice in a table of numbers. 
Entire books have been written about graphing numerical data, so I can only 
give a brief summary of some of the more important points here.
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Showing the distribution with histograms
 Histograms are bar charts that show what fraction of the subjects have values 

falling within specified intervals. The main purpose of a histogram is to show 
you how the values of a numerical value are distributed. This distribution is 
an approximation of the true population frequency distribution for that vari-
able, as shown in Figure 8-6.

The smooth curve in Figure 8-6a shows how IQ values are distributed in an 
infinitely large population. The height of the curve at any IQ value is propor-
tional to the fraction of the population in the immediate vicinity of that IQ. 
This curve has the typical “bell” shape of a normal distribution. In the follow-
ing sections, I explain how histograms are useful when dealing with several 
types of non-normal distributions.
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The histogram in Figure 8-6b indicates how the IQs of 60 subjects randomly 
sampled from the population might be distributed. Each bar represents an 
interval of IQ values with a width of ten IQ points, and the height of each bar 
is proportional to the number of subjects in the sample whose IQ fell within 
that interval.

Log-normal distributions
Because a sample is only an imperfect representation the population, deter-
mining the precise shape of a distribution can be difficult unless your sample 
size is very large. Nevertheless, a histogram usually helps you spot skewed 
data, as shown in Figure 8-7a. This kind of shape is typical of a log-normal 
distribution, which occurs very often in biological work (see Chapter 25). 
It’s called log-normal because if you take the logarithm of each data value (it 
doesn’t matter what kind of logarithm you take), the resulting logs will have a 
normal distribution, as shown in Figure 8-7b.
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So it’s good practice to prepare a histogram for every numerical variable you 
plan to analyze, to see whether it’s noticeably skewed and, if so, whether a 
logarithmic “transformation” makes the distribution more nearly normal.

Other abnormal distributions
Log-normality isn’t the only kind of non-normality that can arise in real-world 
data. Depending on the underlying process that gives rise to the data, the 
numbers can be distributed in other ways. For example, event counts often 
behave according to the Poisson distribution (see Chapter 25) and can be, 
at least approximately, normalized by taking the square root of each count 
(instead of the logarithm, as you do for log-normal data). Still other pro-
cesses can give rise to left-skewed data or to data with two (or more) peaks.

 

Figure 8-7:  
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What if neither the log-normal nor the square-root transformation normalizes 
your skewed data? One approach is to use the Box-Cox transformation, which 
has this general formula: Transformed X = (XA – 1)/A, where A is an adjust-
able parameter that you can vary from negative to positive values. Depending 
on the value of A, this transformation can often make left-skewed or right-
skewed data more symmetrical (and more normally distributed). Figure 8-8 
shows how the Box-Cox transformation can help normalize skewed data. 
Some software lets you vary A through a range of positive or negative values 
using a slider on the screen that you can move with your mouse. As you slide 
the A value back and forth, you see the histogram change its shape from left-
skewed to symmetrical to right-skewed. In Figure 8-8, using A = 0.12 normal-
izes the data quite well.

 When A is exactly 0, the Box-Cox formula becomes 0/0, which is indetermi-
nate. But it can be shown that as A approaches 0 (either from the positive or 
negative side), the Box-Cox formula becomes the same as the logarithm func-
tion. So the logarithmic transformation is just a special case of the more gen-
eral Box-Cox transformation.



118 Part II: Getting Down and Dirty with Data 

 

Figure 8-8: 
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If you can’t find any transformation that makes your data look even approxi-
mately normal, then you have to analyze your data using nonparametric meth-
ods, which don’t assume that your data is normally distributed. I describe 
these methods in Chapter 12.

Summarizing grouped data with  
bars, boxes, and whiskers
Sometimes you want to show how a variable varies from one group of sub-
jects to another. For example, blood levels of some enzymes vary among the 
different races. Two types of graphs are commonly used for this purpose: bar 
charts and box-and-whiskers plots.

Bar charts
One simple way to display and compare the means of several groups of data 
is with a bar chart, like the one shown in Figure 8-9a, where the bar height 
for each race equals the mean (or median, or geometric mean) value of the 
enzyme level for that race. And the bar chart becomes even more informative 
if you indicate the spread of values for each race by placing lines represent-
ing one standard deviation above and below the tops of the bars, as shown in 
Figure 8-9b. These lines are always referred to as error bars (an unfortunate 
choice of words that can cause confusion when error bars are added to a bar 
chart).

But even with error bars, a bar chart still doesn’t give a very good picture of 
the distribution of enzyme levels within each group. Are the values skewed? 
Are there outliers? The mean and SD may not be very informative if the 
values are distributed log-normally or in another unusual way. Ideally, you 
want to show a histogram for each group of subjects (I discuss histograms 
earlier in this chapter), but that may take up way too much space. What 
should you do? Keep reading to find out.



119 Chapter 8: Summarizing and Graphing Your Data

 

Figure 8-9: 
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Box-and-whiskers charts
Fortunately, another kind of graph called a box-and-whiskers plot (or B&W, or 
just Box plot) shows — in very little space — a lot of information about the 
distribution of numbers in one or more groups of subjects. A simple B&W 
plot of the same enzyme data illustrated with a bar chart in Figure 8-9 is 
shown in Figure 8-10a.

The B&W figure for each group usually has the following parts:

 ✓ A box spanning the interquartile range (IQR), extending from the first 
quartile (25th centile) to the third quartile (75th centile) of the data (see 
the earlier section “Centiles” for more about this range), and therefore 
encompassing the middle 50 percent of the data

 ✓ A thick horizontal line, drawn at the median (50th centile), which usually 
puts it at or near the middle of the box

 ✓ Dashed lines (whiskers) extending out to the farthest data point that’s 
not more than 1.5 times the IQR away from the box

 ✓ Individual points lying outside the whiskers, considered outliers

B&W plots provide a useful summary of the distribution. A median that’s not 
located near the middle of the box indicates a skewed distribution.

 Some software draws the different parts of a B&W plot according to different 
rules (the horizontal line may be at the mean instead of the median; the box 
may represent the mean ± 1 standard deviation; the whiskers may extend out 
to the farthest outliers; and so on). Always check the software’s documentation 
and provide the description of the parts whenever you present a B&W plot.
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 Some software provides various enhancements to the basic B&W plot.  
Figure 8-10b illustrates two such embellishments you may consider using:

 ✓ Variable width: The widths of the bars can be scaled to indicate the rel-
ative size of each group. You can see that there are considerably fewer 
Asians and “others” than whites or blacks.

 ✓ Notches: The box can have notches that indicate the uncertainty in the 
estimation of the median. If two groups have non-overlapping notches, 
they probably have significantly different medians. Whites and “others” 
have similar median enzyme levels, whereas Asians have significantly 
higher levels and blacks have significantly lower levels.
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Depicting the relationships between 
numerical variables with other graphs
One of the most important uses for graphs in scientific publications is to 
show the relationship between two or more numerical variables, such as the 
associations described in these example questions:

 ✓ Is there an association between Hemoglobin A1c (an indicator of diabe-
tes) and Body Mass Index (an indicator of obesity)?

 ✓ Is the reduction in blood pressure associated with the administered 
dose of an antihypertensive drug (in other words, is there a dose-
response effect)?

These questions are usually answered with the help of regression analysis, 
which I describe in Part IV and Chapter 24. In these chapters, I cover the 
appropriate graphical techniques for showing relationships between  
variables.



Chapter 9

Aiming for Accuracy and Precision
In This Chapter
▶ Starting with accuracy and precision fundamentals
▶ Boosting accuracy and precision 
▶ Determining standard errors for a variety of statistics

A 
 very wise scientist once said, “A measurement whose accuracy is com-
pletely unknown has no use whatever.” Whenever you’re reporting a 

numerical result (and as a researcher, you report numerical results all the 
time), you must include, along with the numerical value, some indication of 
how good that value is. A good numeric result is both accurate and precise. 
In this chapter, I describe what accuracy and precision are, how you can 
improve the accuracy and precision of your results, and how you can express 
quantitatively just how precise your results are.

Beginning with the Basics of  
Accuracy and Precision

Before you read any further, make sure you’ve looked at the “Statistical 
Estimation Theory” section of Chapter 3, which gives an example introducing 
the concepts of accuracy and precision and the difference between them. In a 
nutshell: Accuracy refers to how close your numbers come to the true values; 
precision refers to how close your numbers come to each other. In this sec-
tion, I define accuracy and precision more formally in terms of concepts like 
sample statistic, population parameter, and sampling distribution.

Getting to know sample statistics  
and  population parameters
Scientists conduct experiments on limited samples of subjects in order to draw 
conclusions that (they hope) are valid for a large population of people. Suppose 
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you want to conduct an experiment to determine some quantity of interest. For 
example, you may have a scientific interest in one of these questions:

 ✓ What is the average fasting blood glucose concentration in adults with 
diabetes?

 ✓ What percent of children like chocolate?

 ✓ How much does blood urea nitrogen (BUN) tend to increase (or 
decrease) with every additional year after age 60?

To get exact answers to questions like these, you’d have to examine every 
adult diabetic, or every child, or every person over age 60. But you can’t 
examine every person in the population; you have to study a relatively small 
sample of subjects, in a clinical trial or a survey.

 The numeric result that you get from your sample (such as average glucose, 
the percent of children who like chocolate, or the BUN increase per year) is 
called a sample statistic, and it’s your best guess for the value of the corre-
sponding population parameter, which is the true value of that average or per-
cent or yearly increase in the entire population. Because of random sampling 
fluctuations, the sample statistic you get from your study isn’t exactly equal to 
the corresponding population parameter. Statisticians express this unavoid-
able discrepancy in terms of two concepts: accuracy and precision. To many 
people these two terms mean the same thing, but to a statistician they’re very 
different (as you find out in the following section).

Understanding accuracy and precision  
in terms of the sampling distribution
Imagine a scenario in which an experiment (like a clinical trial or a survey) is 
carried out over and over again an enormous number of times, each time on a 
different random sample of subjects. Using the “percent of kids who like choco-
late” example, each experiment could consist of interviewing 50 randomly 
chosen children and reporting what percentage of kids in that sample said that 
they liked chocolate. Repeating that entire experiment N times (and supposing 
that N is up in the millions) would require a lot of scientists, take a lot of time, 
and cost a lot of money, but suppose that you could actually do it. For each 
repetition of the experiment, you’d get some particular value for the sample 
statistic you were interested in (the percent of kids in that sample who like 
chocolate), and you’d write this number down on a (really big) piece of paper.

After conducting your experiment N times, you’d have a huge set of values 
for the sampling statistic (that is, the percent of kids who like chocolate). 
You could then calculate the mean of those values by adding them up and 
dividing by N. And you could calculate the standard deviation by  subtracting 
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the mean from each value, squaring each difference, adding up the squares, 
dividing by N – 1, and then taking the square root. And you could construct 
a histogram of the N percentage values to see how they were spread out, as 
described in Chapter 8.

 Statisticians describe this in a more formal way — they say that all your rep-
licate results are spread out in something called the sampling distribution for 
that sample statistic of your experiment. The idea of a sampling distribution is 
at the heart of the concepts of accuracy and precision.

 ✓ Accuracy refers to how close your observed sample statistic comes to 
the true population parameter, or more formally, how close the mean of 
the sampling distribution is to the mean of the population distribution. 
For example, how close is the mean of all your percentage values to the 
true percentage of children who like chocolate?

 ✓ Precision refers to how close your replicate values of the sample statistic 
are to each other, or more formally, how wide the sampling distribution 
is, which can be expressed as the standard deviation of the sampling 
distribution. For example, what is the standard deviation of your big col-
lection of percentage values?

Thinking of measurement  
as a kind of sampling
No measuring instrument (ruler, scale, voltmeter, hematology analyzer, and 
so on) is perfect, so questions of measurement accuracy and precision are 
just as relevant as questions of sampling accuracy and precision. In fact, stat-
isticians think of measuring as a kind of sampling process. This analogy may 
seem like quite a stretch, but it lets them analyze measurement errors using 
the same concepts, terminology, and mathematical techniques that they use 
to analyze sampling errors.

For example, suppose you happen to weigh exactly 86.73839 kilograms at this 
very moment. If you were to step onto a bathroom scale (the old kind, with 
springs and a dial), it certainly wouldn’t show exactly that weight. And if you 
were to step off the scale and then on it again, it might not show exactly the 
same weight as the first time. A set of repetitive weights would differ from 
your true weight — and they’d differ from each other — for any of many rea-
sons. For example, maybe you couldn’t read the dial that precisely, the scale 
was miscalibrated, you shifted your weight slightly, or you stood in a slightly 
different spot on the platform each time.

You can consider your measured weight to be a number randomly drawn 
from a hypothetical population of possible weights that the scale might pro-
duce if the same person were to be weighed repeatedly on it. If you weigh 
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yourself a thousand times, those 1,000 numbers will be spread out into a 
sampling distribution that describes the accuracy and precision of the pro-
cess of measuring your weight with that particular bathroom scale.

Expressing errors in terms  
of accuracy and precision
In the preceding section, I explain the difference between accuracy and preci-
sion. In the following sections, I describe what can cause your results to be 
inaccurate and what can cause them to be imprecise.

Inaccuracy comes from systematic errors
Inaccuracy results from the effects of systematic errors — those that tend to 
affect all replications the same way — leading to a biased result (one that’s off 
in a definite direction). These errors can arise in sampling and in measuring.

Systematic errors in a clinical study can result from causes such as the 
 following:

 ✓ Enrolling subjects who are not representative of the population that you 
want to draw conclusions about, either through incorrect inclusion/
exclusion criteria (such as wanting to draw conclusions that apply to 
males and females but enrolling only males) or through inappropriate 
advertising (for example, putting a notice in a newspaper, on the web, or 
on a college cafeteria bulletin board that only part of the target popula-
tion ever looks at)

 ✓ Human error (mistakes) such as recording lab results in the wrong units 
(entering all glucose values as milligrams per deciliter [mg/dL] when 
the protocol calls for millimoles per liter [mmol/L]) or administering the 
wrong product to the subject (giving a placebo to a subject who should 
have gotten the real product)

Systematic errors in a measurement can result from the following types of 
circumstances:

 ✓ Physical changes occur in the measuring instrument (for example, 
wooden rulers might shrink and scale springs might get stiff with age).

 ✓ The measuring instrument is used improperly (for example, the balance 
isn’t zeroed before weighing).

 ✓ The measuring instrument is poorly calibrated (or not calibrated at all).

 ✓ The operator makes mistakes (such as using the wrong reagents in an 
analyzer).
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 Systematic errors don’t follow any particular statistical distribution — they 
can be of almost any magnitude in either direction. They’re not very amenable 
to statistical analysis, either. Each kind of systematic error has to be identi-
fied, and its source has to be tracked down and corrected.

Imprecision comes from random errors
Imprecision results from the effects of random fluctuations — those that tend 
to be unpredictable — and can affect each replication differently.

Sampling imprecision (as, for example, in a clinical trial) arises from several 
sources:

 ✓ Subject-to-subject variability (for example, different subjects have dif-
ferent weights, different blood pressure, and different tendencies to 
respond to a treatment)

 ✓ Within-subject variability (for example, one person’s blood pressure, 
recorded every 15 minutes, will show random variability from one read-
ing to another because of the combined action of a large number of 
internal factors, such as stress, and external factors, like activity, noise, 
and so on)

 ✓ Random sampling errors (inherent in the random sampling process 
itself)

Measurement imprecision arises from the combined effects of a large number 
of individual, uncontrolled factors, such as

 ✓ Environmental factors (like temperature, humidity, mechanical vibra-
tions, voltage fluctuations, and so on)

 ✓ Physically induced randomness (such as electrical noise or static, or 
nuclear decay in assay methods using radioactive isotopes)

 ✓ Operator variability (for example, reading a scale from a slightly differ-
ent angle or estimating digits between scale markings)

 Random errors may seem to be more diverse, heterogeneous, indescribable, 
and, therefore, more unmanageable than systematic errors. But it turns out 
that random errors are much more amenable to statistical description and 
analysis than systematic errors, as you see in the next section.

 The general magnitude of random sampling and measurement errors is 
expressed in something called the standard error (SE) of the sample statistic or 
the measured result. The SE is simply the standard deviation of the sampling 
distribution of the sample statistic or measured value. The smaller the SE is, 
the higher the precision. (Find out how to calculate the SE for different sample 
statistics later in this chapter.)
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Improving Accuracy and Precision
While perfect accuracy and precision will always be an unattainable ideal, 
you can take steps to minimize the effects of systematic errors and random 
fluctuations on your sampled and measured data.

Enhancing sampling accuracy
You improve sampling accuracy by eliminating sources of bias in the selec-
tion of subjects for your study. The study’s inclusion criteria should ideally 
define the population you want your study’s conclusions to apply to. If you 
want your conclusions to apply to all adult diabetics, for example, your inclu-
sion criteria may state that subjects must be 18 years or older and must have 
a definitive clinical diagnosis of diabetes mellitus, as confirmed by a glucose 
tolerance test. The study’s exclusion criteria should be limited to only those 
conditions and situations that make it impossible for a subject to safely par-
ticipate in the study and provide usable data for analysis.

You also want to try to select subjects as broadly and evenly as possible 
from the total target population. This task may be difficult or even impossible 
(it’s almost impossible to obtain a representative sample from a worldwide 
population). But the scientific validity of a study depends on having as rep-
resentative a sample as possible, so you should sample as wide a geographic 
region as is practically feasible.

Getting more accurate measurements
Measurement accuracy very often becomes a matter of properly calibrating 
an instrument against known standards. The instrument may be as simple as 
a ruler or as complicated as a million-dollar analyzer, but the principles are 
the same. They generally involve the following steps:

 1. Acquire one or more known standards from a reliable source.

  Known standards are generally prepared and certified by an organiza-
tion or a company that you have reason to believe has much more accu-
rate instruments than you do, such as the National Institute of Standards 
and Technology (NIST) or a well-respected company like Hewlett-
Packard or Fisher Scientific.

  If you’re calibrating a blood glucose analyzer, for example, you need to 
acquire a set of glucose solutions whose concentrations are known with 
great accuracy, and can be taken as “true” concentration values (per-
haps five vials, with glucose values of 50, 100, 200, 400, and 800 mg/dL).
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 2. Run your measuring process or assay, using your instrument, on those 
standards; record the instrument’s results, along with the “true” values.

  Continuing with the glucose example, you might split each vial into four 
aliquots (portions), and run these 20 specimens through the analyzer.

 3. Plot your instrument’s readings against the true values and fit the best 
line possible to that data.

  You’d plot the results of the analysis of the standards as 20 points on a 
scattergram, with the true value from the standards provider (GlucTrue) 
on the X axis, and the instrument’s results (GlucInstr) on the Y axis. The 
best line may not be a straight line, so you may have to do some nonlin-
ear curve-fitting (I describe how to do this in Chapter 21).

 4. Use that fitted line to convert your instrument’s readings into the 
values you report. (You have to do some algebra to rearrange the for-
mula to calculate the X value from the Y value.)

  Suppose the fitted equation from Step 3 was GlucInstr = 1.54 + 0.9573 ×  
GlucTrue. With a little algebra, this equation can be rearranged to 
GlucTrue = (GlucInstr – 1.54)/0.9573. If you were to run a patient’s speci-
men through that instrument and get a value of 200.0, you’d use the 
 calibration equation to get the corrected value: (200 – 1.54)/0.9573, 
which works out to 207.3, the value you’d report for this specimen.

  If done properly, this process can effectively remove almost all systematic 
errors from your measurements, resulting in very accurate measurements.

 You can find out more about calibration curves from the GraphPad website 
(www.graphpad.com).

Improving sampling precision
You improve the precision of anything you observe from your sample of 
subjects by having a larger sample. The central limit theorem (or CLT, one of 
the foundations of probability theory) describes how random fluctuations 
behave when a bunch of random variables are added (or averaged) together. 
Among many other things, the CLT describes how the precision of a sample 
statistic depends on the sample size.

 The precision of any sample statistic increases (that is, the SE decreases) in 
proportion to the square root of the sample size. So, if Trial A has four times 
as many subjects as Trial B, then the results from Trial A will be twice as pre-
cise as (that is, have one-half the SE of) the results from Trial B, because the 
square root of four is two.

You can also get better precision (and smaller SEs) by setting up your experi-
ment in a way that lessens random variability in the population. For example, 

http://www.graphpad.com
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if you want to compare a weight-loss product to a placebo, you should try to 
have the two treatment groups in your trial as equally balanced as possible 
with respect to every subject characteristic that can conceivably influence 
weight loss. Identical twins make ideal (though hard-to-find) subjects for clin-
ical trials because they’re so closely matched in so many ways. Alternatively, 
you can make your inclusion criteria more stringent. For example, you can 
restrict the study groups to just males within a narrow age, height, and 
weight range and impose other criteria that eliminate other sources of 
between-subject variability (such as history of smoking, hypertension, ner-
vous disorders, and so on).

 But although narrowing the inclusion criteria makes your study sample more 
homogeneous and eliminates more sources of random fluctuations, it also has 
some important drawbacks:

 ✓ It makes finding suitable subjects harder.

 ✓ Your inferences (conclusions) from this study can now only be applied 
to the narrower population (corresponding to your more stringent inclu-
sion criteria).

Increasing the precision  
of your  measurements
Here are a few general suggestions for achieving better precision (smaller 
random errors) in your measurements:

 ✓ Use the most precise measuring instruments you can afford. For exam-
ple, a beam balance may yield more precise measurements than a spring 
scale, and an electronic balance may be even more precise.

 ✓ Control as many sources of random fluctuations due to external perturba-
tions as you can. Depending on how the measuring device operates, a read-
ing can be influenced by temperature, humidity, mechanical vibrations, 
electrical power fluctuations, and a host of other environmental factors. 
Operator technique also contributes to random variability in readings.

 ✓ When reading an instrument with an analog display, like a dial or linear 
scale (as opposed to a computerized device with a digital readout), try to 
interpolate (estimate an extra digit) between the divisions and record the 
number with that extra decimal place. So if you’re weighing someone on a 
scale with a large rotary dial with lines spaced every kilogram, try to esti-
mate the position of the dial pointer to the nearest tenth of a kilogram.

 ✓ Make replicate readings and average them. This technique is one of the 
most widely applicable (see the next section for more information).
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Calculating Standard Errors for  
Different Sample Statistics

As I mention in the earlier section “Imprecision comes from random errors,” 
the standard error (SE) is just the standard deviation (SD) of the sampling 
distribution of the numbers that you get from measuring the same thing over 
and over again. But you don’t necessarily have to carry out this repetitive 
process in practice. You can usually estimate the SE of a sample statistic 
obtained from a single experiment by using a formula appropriate for the 
sample statistic. The following sections describe how to calculate the SE for 
various kinds of sample statistics.

 What if you’ve calculated something from your raw data by a very compli-
cated set of formulas (like the area under a concentration-versus-time curve)? 
Ideally, you should be able to quote a standard error for any quantity you cal-
culate from your data, but no SE formula may be available for that particular 
calculation. In Chapter 11, I explain how SEs propagate through various math-
ematical formulas, and this information might help you figure out the SE for 
some calculated quantities. But there is also a very general (and surprisingly 
simple) method to estimate the SE of centiles, correlation coefficients, AUCs, 
or anything else you might want to calculate from your data. It involves using 
your data in a special way (called “resampling”) to simulate what might have 
happened if you had repeated your experiment many times over, each time 
calculating and recording the quantity you’re interested in. The SD of all these 
simulated values turns out to be a good estimate of the SE of the sample statis-
tic. When this method was first proposed, statisticians were very skeptical and 
called it the “bootstrap” method, implying that it was like “picking yourself up 
by your bootstraps” (that is, it was impossible). I describe this method (with 
an example) in an article at www.dummies.com/extras/biostatistics.

A mean
From the central limit theorem (see the earlier section “Improving sampling 
precision” for details), the SE of the mean of N numbers (SEMN) is related to 
the standard deviation (SD) of the numbers by the formula . 
So if you study 25 adult diabetics and find that they have an average fasting 
blood glucose level of 130 milligrams per deciliter (mg/dL) with an SD of ±40 
mg/dL, you can say that your estimate of the mean has a precision (SE) of 

, which is equal to ±40/5, or ±8 mg/dL.

Making three or four replicates of each measurement and then reporting the 
average of those replicates is typical practice in laboratory research (though 
less common in clinical studies). Applied to measurements, the central limit 

http://www.dummies.com/extras/biostatistics
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theorem tells you that the SEMN is more precise than any one individual mea-
surement (SE1) by a factor of the square root of N: .

 The mean of four measurements has an SE that’s one-half the SE of a single 
measurement; that is, it’s twice as precise. So averaging three or four indepen-
dent measurements often provides an easy and relatively inexpensive way to 
improve precision. But because of the square-root relationship, it becomes 
a matter of diminishing returns — to get 1 extra digit of precision (a tenfold 
reduction in SE), you have to average 100 independent replicates. Also, aver-
aging doesn’t improve accuracy; systematic errors affecting all the replicates 
are not reduced by averaging.

A proportion
If you were to survey 100 typical children and find that 70 of them like choco-
late, you’d estimate that 70 percent of children like chocolate. How precise is 
that estimated 70-percent figure?

Based on the properties of the binomial distribution (see Chapters 3 and 25), 
which generally describes observed proportions of this type, the standard 
error (SE) of an observed proportion (p), based on a sample size of N, is 
given by this approximate formula:

For small values of N, this formula underestimates SE, but for N = 10 or more, 
the approximation is very good.

Plugging in the numbers, the SE of the observed 70 percent (0.7 proportion) 
in 100 children is

So you report the percentage of children who like chocolate as 70 percent 
± 4.6 percent, being sure to state that the ± number is the standard error of 
the percentage.

Event counts and rates
Closely related to the binomial case in the preceding section (where you 
have some number of events observed out of some number of opportunities 
for the event to occur) is the case of the observed number of sporadic events 
over some interval of time or space.
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For example, suppose that there were 36 fatal highway accidents in your 
county in the last three months. If that’s the only safety data you have to 
go on, then your best estimate of the monthly fatal accident rate is simply 
that observed count divided by the length of time during which they were 
observed: 36/3, or 12.0 fatal accidents per month. How precise is that estimate?

Based on the properties of the Poisson distribution (see Chapters 3 and 25), 
which generally describes the sporadic occurrences of independent events, 
the standard error (SE) of an event rate (R), based on the occurrence of N 
events in T units of time, is given by this approximate formula:

For small values of N, this formula underestimates the SE, but for an N of ten 
or more, the approximation is very good.

Plugging in the numbers, the SE for an observed count of 36 fatalities (N) in 
3 months (T) is

So you would report that the estimated rate is 12.0 ± 2.0 fatal accidents per 
month, being sure to state that the ± number is the SE of the monthly rate.

 Another common example is an isotope-based lab assay, which counts individ-
ual nuclear disintegrations. These instruments can be programmed to count for 
a certain amount of time or to count until a certain number of disintegrations 
have been observed. Either way, the disintegration rate is the number of counts 
divided by the amount of time. If you set the instrument to count for one second 
and you get about 100 clicks, that number is good to ±10 clicks, or about 10 
percent relative precision. But if you count for one minute and get about 6,000 
clicks, that number is good to ±77 clicks, or about 1.3 percent relative precision. 
So there’s a clear tradeoff between speed and precision — the longer you count, 
the more precise the event rate (and in this case, the assay result).

A regression coefficient
Suppose you’re interested in whether or not blood urea nitrogen (BUN), a 
measure of kidney performance, tends to naturally increase after age 60 in 
generally healthy adults. You enroll a bunch of generally healthy adults age 
60 and above, record their ages, and measure their BUN. Next, you create 
a scatter plot of BUN versus age, and then you fit a straight line to the data 
points, using regression analysis (see Chapter 18 for details). The regression 
analysis gives you two regression coefficients: the slope and the intercept of 
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the fitted straight line. The slope of this line has units of (mg/dL)/year, and 
tells you how much, on average, a healthy person’s BUN goes up with every 
additional year of age after age 60. Suppose the answer you get is a 1.4 mg/dL 
glucose increase per year. How precise is that estimate of yearly increase?

 This is one time you don’t need any formula. Any good regression program 
(like the ones I describe in Chapter 3 and in the regression-related chapters 
later in this book) should provide the SE for every parameter (regression 
coefficient) it fits to your data, so it should give you the SE for the slope of the 
fitted straight line. Be thankful the program does this, because you wouldn’t 
want to attempt the SE calculations yourself — they’re really complicated!

Estimating the sample size needed to achieve 
the precision you want

All the SE formulas shown in this chapter con-
tain a  term. (Precision is almost always 
proportional to the square root of N.) This fact 
leads to a simple way to estimate the sample 
size required for any desired SE — just use 
some algebra to solve the SE formula for N.

For example, if you’re designing a study to esti-
mate the success rate of some treatment, and 
you want your estimate to have an SE of ±5 
percentage points, how many subjects do you 
have to treat? The formula for the SE of a pro-
portion, as you find out earlier in this chapter, 
is . Using some high-school 
algebra, you can solve this equation for N to get

.

You can substitute 0.05 for SE (keep in mind 
that numbers have to go into the formulas as 

proportions, not as percentages). You also need 
a guess for the expected proportion of suc-
cesses. Suppose you expect your treatment to 
have an 80 percent success rate; you enter 0.8 
for p (remember: proportions, not percentages). 
You have , which 
works out to about 64 subjects. Similarly, you 
can calculate that if you want ±1 percent preci-
sion, you need 1,600 subjects (it’s hard to esti-
mate proportions very precisely!).

The same idea can be applied to other sample 
statistics, even those for which no explicit SE 
formula is available. For example, Chapter 18 
describes a way to estimate how many obser-
vations you need in order to estimate a regres-
sion coefficient with a certain precision. 



Chapter 10

Having Confidence in Your Results
In This Chapter
▶ Investigating the basics of confidence intervals
▶ Determining confidence intervals for a number of statistics
▶ Linking significance testing to confidence intervals 

I 
n Chapter 9, I show you how to express the precision of a numeric result 
using the standard error (SE) and how to calculate the SE (or have a com-

puter calculate it for you) for the most common kinds of numerical results 
you get from biological studies — means, proportions, event rates, and 
regression coefficients. But the SE is only one way of specifying how precise 
your results are. In this chapter, I describe another commonly used indicator 
of precision — the confidence interval (CI).

 I assume that you’re familiar with the concepts of populations, samples, and 
statistical estimation theory (see Chapter 3 if you’re not) and that you know 
what standard errors are (see Chapter 9 if you don’t). Always keep in mind that 
when you conduct any kind of research study, such as a clinical trial, you’re 
studying a small sample of subjects (like 50 adult volunteers with diabetes) that 
you’ve randomly selected as representing a large, hypothetical population (all 
adults with diabetes). And any numeric quantity (called a sample statistic) that 
you observe in this sample is just an imperfect estimate of the corresponding 
population parameter — the true value of that quantity in the population.

Feeling Confident about Confidence 
Interval Basics

Before jumping into the main part of this chapter (how to calculate confi-
dence intervals around the sample statistics you get from your experiments), 
it’s important to be comfortable with the basic concepts and terminology 
related to confidence intervals. This is an area where nuances of meaning can 
be tricky, and the right-sounding words can be used the wrong way.



134 Part II: Getting Down and Dirty with Data 

Defining confidence intervals
 Informally, a confidence interval indicates a range of values that’s likely to 

encompass the truth. More formally, the CI around your sample statistic is cal-
culated in such a way that it has a specified chance of surrounding (or “con-
taining”) the value of the corresponding population parameter.

Unlike the SE, which is usually written as a ± number immediately following 
your measured value (for example, a blood glucose measurement of 120 ± 3 
mg/dL), the CI is usually written as a pair of numbers separated by a dash, 
like this: 114–126. The two numbers that make up the lower and upper ends of 
the confidence interval are called the lower and upper confidence limits (CLs). 
Sometimes you see the abbreviations written with a subscript L or U, like this: 
CLL or CLU, indicating the lower and upper confidence limits, respectively.

 Although SEs and CIs are both used as indicators of the precision of a numeri-
cal quantity, they differ in their focus (sample or population):

 ✓ A standard error indicates how much your observed sample statistic 
may fluctuate if the same experiment is repeated a large number of 
times, so the SE focuses on the sample.

 ✓ A confidence interval indicates the range that’s likely to contain the true 
population parameter, so the CI focuses on the population.

 One important property of confidence intervals (and standard errors) is that 
they vary inversely with the square root of the sample size. For example, if 
you were to quadruple your sample size, it would cut the SE and the width of 
the CI in half. This “square root law” is one of the most widely applicable rules 
in all of statistics.

Looking at confidence levels
The probability that the confidence interval encompasses the true value is 
called the confidence level of the CI. You can calculate a CI for any confidence 
level you like, but the most commonly seen value is 95 percent. Whenever 
you report a confidence interval, you must state the confidence level, like 
this: 95% CI = 114–126.

In general, higher confidence levels correspond to wider confidence inter-
vals, and lower confidence level intervals are narrower. For example, the 
range 118–122 may have a 50 percent chance of containing the true popula-
tion parameter within it; 115–125 may have a 90 percent chance of containing 
the truth, and 112–128 may have a 99 percent chance.
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 The confidence level is sometimes abbreviated CL, just like the confidence 
limit, which can be confusing. Fortunately, the distinction is usually clear 
from the context in which CL appears; when it’s not clear, I spell out what CL 
stands for.

Taking sides with confidence intervals
Properly calculated 95 percent confidence intervals contain the true value 95 
percent of the time and fail to contain the true value the other 5 percent of 
the time. Usually, 95 percent confidence limits are calculated to be balanced 
so that the 5 percent failures are split evenly — the true value is less than the 
lower confidence limit 2.5 percent of the time and greater than the upper con-
fidence limit 2.5 percent of the time. This is called a two-sided, balanced CI.

But the confidence limits don’t have to be balanced. Sometimes the conse-
quences of overestimating a value may be more severe than underestimat-
ing it, or vice versa. You can calculate an unbalanced, two-sided, 95 percent 
confidence limit that splits the 5 percent exceptions so that the true value 
is smaller than the lower confidence limit 4 percent of the time, and larger 
than the upper confidence limit 1 percent of the time. Unbalanced confi-
dence limits extend farther out from the estimated value on the side with the 
smaller percentage.

Betting on the truth
You can think of confidence intervals in terms of 
the following imaginary scenario. Say you con-
duct an experiment on a random sample from 
some population, and you obtain a value for 
some sample statistic. You calculate a 95 per-
cent CI around this value, and then you assert 
that your CI contains the true population value. 
If the true value were ever to become known, 
your assertion would be revealed as either true 
or false. In the long run, if you were to carry out 
many such experiments, calculating the 95 per-
cent confidence interval each time, your asser-
tions would prove to be true at least 95 percent 
of the time.

If you’re the devious type, you may be think-
ing, “I know how to guarantee that I’ll be right 
just about all the time, and I don’t have to do 
any calculations at all. I’ll just always quote an 
absurdly wide confidence interval.” For exam-
ple, you could quote a confidence interval for 
mean blood glucose that goes from 0 to 1 billion 
mg/dL. Both of those extremes are physically 
impossible, of course, so the true value has to 
lie somewhere within that ridiculously large 
interval. Clearly, that’s not what you want a CI 
to be. A good CI must be as narrow as possible 
while still guaranteeing that it encompasses the 
true value at least a specified fraction (the con-
fidence level) of the time.
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In some situations, like noninferiority studies (described in Chapter 16), 
you may want all the failures to be on one side; that is, you want a one-sided 
confidence limit. Actually, the other side goes out an infinite distance. For 
example, you can have an observed value of 120 with a one-sided confidence 
interval that goes from minus infinity to +125 or from 115 to plus infinity.

Calculating Confidence Intervals
Just as the SE formulas in Chapter 9 depend on what kind of sample statistic 
you’re dealing with (whether you’re measuring or counting something or 
getting it from a regression program or from some other calculation), confi-
dence intervals (CIs) are calculated in different ways depending on how you 
obtain the sample statistic. In the following sections, I describe methods for 
the most common situations, using the same examples I use in Chapter 9 for 
calculating standard errors.

 You can use a “bootstrap” simulation method to calculate the SE of any quan-
tity you can calculate from your data; you can use the same technique to gen-
erate CIs around those calculated quantities. You use your data in a special 
way (called “resampling”) to simulate what might have happened if you had 
repeated your experiment many times over, each time calculating and record-
ing the quantity you’re interested in. The CI is simply the interval that encloses 
95 percent of all these simulated values. I describe this method (with an exam-
ple) in an online article at www.dummies.com/extras/biostatistics.

Before you begin: Formulas for confidence 
limits in large samples
Most of the approximate methods I describe in the following sections are 
based on the assumption that your observed value has a sampling distribu-
tion that’s (at least approximately) normally distributed. Fortunately, there 
are good theoretical and practical reasons to believe that almost every 
sample statistic you’re likely to encounter in practical work will have a nearly 
normal sampling distribution, for large enough samples.

 For any normally distributed sample statistic, the lower and upper confidence 
limits can be calculated very simply from the observed value (V) and standard 
error (SE) of the statistic:

CLL = V – k × SE 

CLU = V + k × SE

http://www.dummies.com/extras/biostatistics
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Confidence limits computed this way are often referred to as normal-based, 
asymptotic, or central-limit-theorem (CLT) confidence limits. (The CLT, which 
I introduce in Chapter 9, provides good reason to believe that almost any 
sample statistic you’re likely to encounter will be nearly normally distributed 
for large samples.) The value of k in the formulas depends on the desired con-
fidence level and can be obtained from a table of critical values for the normal 
distribution or from a web page such as StatPages.info/pdfs.html. 
Table 10-1 lists the k values for some commonly used confidence levels.

Table 10-1 Multipliers for Normal-Based Confidence Intervals
Confidence Level Tail Probability k Value
50% 0.50 0.67
80% 0.20 1.28
90% 0.10 1.64
95% 0.05 1.96
98% 0.02 2.33
99% 0.01 2.58

 For the most commonly used confidence level, 95 percent, k is 1.96, or approxi-
mately 2. This leads to the very simple approximation that 95 percent confidence 
limits are about two standard errors above and below the observed value.

 The distance of each confidence limit from the measured value, k × SE, is called 
the margin of error (ME). Because MEs are almost always calculated at the 95 
percent confidence level, they’re usually about twice as large as the correspond-
ing CIs. MEs are most commonly used to express the precision of the results of 
a survey, such as “These poll results have a margin of error of ±5 percent.” This 
usage can lead to some confusion because the SE is also usually expressed as a 
± number. For this reason, it’s probably best to use the CI instead of the ME to 
express precision when reporting clinical research results. In any event, be sure 
to state which one you’re using when you report your results.

The confidence interval around a mean
Suppose you study 25 adult diabetics (N = 25) and find that they have an 
average fasting blood glucose level of 130 mg/dL with a standard deviation 
(SD) of ±40 mg/dL. What is the 95 percent confidence interval around that 
130 mg/dL estimated mean?

http://StatPages.info/pdfs.html
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To calculate the confidence limits around a mean using the formulas in the 
preceding section, you first calculate the standard error of the mean (the 
SEM), which (from Chapter 9) is , where SD is the standard devia-
tion of the N individual values. So for the glucose example, the SE of the mean 
is , which is equal to 40/5, or 8 mg/dL.

Using k = 1.95 for a 95 percent confidence level (from Table 10-1), the lower 
and upper confidence limits around the mean are

CLL = 130 – 1.96 × 8 = 114.3

CLU = 130 + 1.96 × 8 = 145.7

You report your result this way: mean glucose = 130 mg/dL, 95%CI = 114–146 
mg/dL. (Don’t report numbers to more decimal places than their precision 
warrants. In this example, the digits after the decimal point are practically 
meaningless, so the numbers are rounded off.)

 A more accurate version of the formulas in the preceding section uses k 
values derived from a table of critical values of the Student t distribution. You 
need to know the number of degrees of freedom, which, for a mean value, is 
always equal to N – 1. Using a Student t table (see Chapter 25) or a web page 
like StatPages.info/pdfs.html, you can find that the Student-based k 
value for a 95 percent confidence level and 24 degrees of freedom is equal 
to 2.06, a little bit larger than the normal-based k value. Using this k value 
instead of 1.96, you can calculate the 95 percent confidence limits as 113.52 
and 146.48, which happen to round off to the same whole numbers as the 
normal-based confidence limits. Generally you don’t have to use the more-
complicated Student-based k values unless N is quite small (say, less than 10).

 What if your original numbers (the ones being averaged) aren’t normally dis-
tributed? You shouldn’t just blindly apply the normal-based CI formulas for 
non-normally distributed data. If you know that your data is log-normally dis-
tributed (a very common type of non-normality), you can do the following:

 1. Take the logarithm of every individual subject’s value.

 2. Find the mean, SD, and SEM of these logarithms.

 3. Use the normal-based formulas to get the confidence limits (CLs) 
around the mean of the logarithms.

 4. Calculate the antilogarithm of the mean of the logs.

  The result is the geometric mean of the original values. (See Chapter 8.)

 5. Calculate the antilogarithm of the lower and upper CLs.

  These are the lower and upper CLs around the geometric mean.

http://StatPages.info/pdfs.html
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 If you don’t know what distribution your values have, you can use the boot-
strapping approach described later in this chapter.

The confidence interval  
around a proportion
If you were to survey 100 typical children and find that 70 of them like choco-
late, you’d estimate that 70 percent of children like chocolate. What is the 95 
percent CI around that 70 percent estimate?

There are many approximate formulas for confidence intervals around 
an observed proportion (also called binomial confidence intervals). The 
simplest method is based on approximating the binomial distribution by a 
normal distribution (see Chapter 25). It should be used only when N (the 
denominator of the proportion) is large (at least 50), and the proportion is 
not too close to 0 or 1 (say, between 0.2 and 0.8). You first calculate the SE of 
the proportion as described in Chapter 9, , and then you use 
the normal-based formulas in the earlier section “Before you begin: Formulas 
for confidence limits in large samples.”

Using the numbers from the preceding example, you have p = 0.7 and N = 100, 
so the SE for the proportion is , or 0.046. From Table 10-1, k is 
1.96 for 95 percent confidence limits. So CLL = 0.7 – 1.96 × 0.046 and CLU = 0.7 
+ 1.96 × 0.046, which works out to a 95 percent CI of 0.61 to 0.79. To express 
these fractions as percentages, you report your result this way: “The percent-
age of children in the sample who liked chocolate was 70 percent, 95%CI = 
61–79%.”

Many other approximate formulas for CIs around observed proportions exist, 
most of which are more reliable when N is small. There are also several exact 
methods, the first and most famous of which is called the Clopper-Pearson 
method, named after the authors of a classic 1934 article. The Clopper-
Pearson calculations are too complicated to attempt by hand, but fortu-
nately, many statistical packages can do them for you.

 You can also go to the “Binomial Confidence Intervals” section of the online 
web calculator at StatPages.info/confint.html. Enter the numerator 
(70) and denominator (100) of the fraction, and press the Compute button. 
The page calculates the observed proportion (0.7) and the exact confidence 
limits (0.600 and 0.788), which you can convert to percentages and express as 
95%CI = 60–79%. For this example, the normal-based approximate CI (61–79%) 
is very close to the exact CI, mainly because the sample size was quite large. 
For small samples, you should report exact confidence limits.

http://statpages.info/confint.html
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The confidence interval around  
an event count or rate
Suppose that there were 36 fatal highway accidents in your county in the last 
three months. If that’s the only safety data you have to go on, then your best 
estimate of the monthly fatal accident rate is simply the observed count (N), 
divided by the length of time (T) during which the N counts were observed: 
36/3, or 12.0 fatal accidents per month. What is the 95 percent CI around that 
estimate?

There are many approximate formulas for the CIs around an observed 
event count or rate (also called a Poisson CI). The simplest method is based 
on approximating the Poisson distribution by a normal distribution (see 
Chapter 25). It should be used only when N is large (at least 50). You first 
calculate the SE of the event rate as described in Chapter 9, ; then 
you use the normal-based formulas in the earlier section “Before you begin: 
Formulas for confidence limits in large samples.”

Using the numbers from the fatal-accident example, N = 36 and T=3, so the 
SE for the proportion is , or 1.67. According to Table 10-1, k is 1.96 for 
95 percent CLs. So CLL = 12.0 – 1.96 × 1.67 and CLU = 12.0 + 1.96 × 1.67, which 
works out to 95 percent confidence limits of 8.73 and 15.27. You report your 
result this way: “The fatal accident rate was 12.0, 95%CI = 8.7–15.3 fatal acci-
dents per month.”

To calculate the CI around the event count itself, you estimate the SE of the 
count N as , then calculate the CI around the observed count using 
the formulas in the earlier section “Before you begin: Formulas for confidence 
limits in large samples.” So the SE of the 36 observed fatal accidents in a 
three-month period is simply , which equals 6.0. So CLL = 36.0 – 1.96 × 6.0 
and CLH = 36.0 + 1.96 × 6.0, which works out to a 95 percent CI of 24.2 to 47.8 
accidents in a three-month period.

Many other approximate formulas for CIs around observed event counts and 
rates are available, most of which are more reliable when N is small. There 
are also several exact methods. They’re too complicated to attempt by hand, 
involving evaluating the Poisson distribution repeatedly to find values for 
the true mean event count that are consistent with (that is, not significantly 
different from) the count you actually observed. Fortunately, many statistical 
packages can do these calculations for you.

 You can also go to the “Poisson Confidence Intervals” section of the online web 
calculator at StatPages.info/confint.html. Enter the observed count 
(36) and press the Compute button. The page calculates the exact 95 percent 
CI (25.2–49.8). For this example, the normal-based CI (24.2–47.8) is only a rough 
approximation to the exact CI, mainly because the event count was only 36 
accidents. For small samples, you should report exact confidence limits.

http://statpages.info/confint.html
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The confidence interval around  
a regression coefficient
Suppose you’re interested in whether or not blood urea nitrogen (BUN), a mea-
sure of kidney performance, tends to increase after age 60 in healthy adults. 
You can enroll a bunch of generally healthy adults age 60 and above, record 
their ages, and measure their BUN. Then you can create a scatter plot of BUN 
versus age and fit a straight line to the data points (see Chapter 18). The slope 
of this line would have units of (mg/dL)/year and would tell you how much, on 
average, a healthy person’s BUN goes up with every additional year of age after 
age 60. Suppose the answer you get is that glucose increases 1.4 mg/dL per 
year. What is the 95 percent CI around that estimate of yearly increase?

This is one time you don’t need any formulas. Any good regression program 
(like the ones described in Chapter 4) can provide the SE for every parameter 
it fits to your data. (Chapter 18 describes where to find the SE for the slope 
of a straight line.) The regression program may also provide the confidence 
limits for any confidence level you specify, but if it doesn’t, you can easily cal-
culate the confidence limits using the formulas in the earlier section “Before 
you begin: Formulas for confidence limits in large samples.”

Relating Confidence Intervals  
and Significance Testing

You can use confidence intervals (CIs) as an alternative to some of the usual 
significance tests (see Chapter 3 for an introduction to the concepts and 
terminology of significance testing and Chapters 12–15 for descriptions of 
specific significance tests). To assess significance using CIs, you first define a 
number that measures the amount of effect you’re testing for. This effect size 
can be the difference between two means or two proportions, the ratio of two 
means, an odds ratio, a relative risk ratio, or a hazard ratio, among others. 
The complete absence of any effect corresponds to a difference of 0, or a 
ratio of 1, so I call these the “no-effect” values.

 The following are always true:

 ✓ If the 95 percent CI around the observed effect size includes the no-effect 
value (0 for differences, 1 for ratios), then the effect is not statistically sig-
nificant (that is, a significance test for that effect will produce p > 0.05).

 ✓ If the 95 percent CI around the observed effect size does not include the 
no-effect value, then the effect is significant (that is, a significance test for 
that effect will produce p ≤ 0.05).
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The same kind of correspondence is true for other confidence levels and 
significance levels: 90 percent confidence levels correspond to the p = 0.10 
significance level, 99 percent confidence levels correspond to the p = 0.01 sig-
nificance level, and so on.

So you have two different, but related, ways to prove that some effect is 
 present — you can use significance tests, and you can use confidence inter-
vals. Which one is better? The two methods are consistent with each other, 
but many people prefer the CI approach to the p-value approach. Why?

 ✓ The p value is the result of the complex interplay between the observed 
effect size, the sample size, and the size of random fluctuations, all 
boiled down into a single number that doesn’t tell you whether the effect 
was large or small, clinically important or negligible.

 ✓ The CI around the mean effect clearly shows you the observed effect 
size, along with an indicator of how uncertain your knowledge of that 
effect size is. It tells you not only whether the effect is statistically sig-
nificant, but also can give you an intuitive sense of whether the effect is 
clinically important.

  The CI approach lends itself to a very simple and natural way of com-
paring two products for equivalence or noninferiority, as I explain in 
Chapter 16.  



Chapter 11

Fuzzy In Equals Fuzzy Out:  
Pushing Imprecision  

through a Formula 
In This Chapter
▶ Checking out the general concept of error propagation
▶ Propagating errors through simple mathematical expressions
▶ Getting a grip on error propagation for more complicated expressions

I 
n Chapters 9 and 10, I describe how you can estimate the precision of 
anything you can measure (like height and weight) or count (such as 

hospital admissions, adverse events, and responses to treatment). In this 
chapter, I show you how to estimate the precision of things you calculate 
from the things you measure or count (for example, you can calculate body 
mass index from height and weight measurements). I explain the concept of 
error propagation, and I describe some simple rules you can use for simple 
expressions, such as those involving only addition, subtraction, multiplica-
tion, and division. Then I show you how to deal with simple or complicated 
expressions without having to do any calculations at all, using readily avail-
able software to do all the hard work for you.

Knowing how to make these calculations is important because often you can’t 
directly measure the thing you’re really interested in; you have to calculate 
it from one or more other things that you can measure. You have to be able 
to determine the precision of these calculated numbers as well, because any 
number whose accuracy or precision is completely unknown is completely 
worthless.  



144 Part II: Getting Down and Dirty with Data 

Note: For the purposes of this chapter, it doesn’t matter whether you choose 
to express precision as a standard error (SE) or as a margin of error (the 
distance from the number to the ends of a confidence interval, as I describe 
in Chapter 10). I refer to SE throughout this chapter, but the techniques I 
describe work for margin of error as well.

Understanding the Concept  
of Error Propagation

A less extreme form of the old saying “garbage in equals garbage out” is 
“fuzzy in equals fuzzy out.” Random fluctuations in one or more measured 
variables produce random fluctuations in anything you calculate from those 
variables. This process is called the propagation of errors. You need to know 
how measurement errors propagate through a calculation that you perform 
on a measured quantity.

 Here’s a simple way to estimate the SE of a variable (Y) that’s calculated 
from almost any mathematical expression that involves a single variable (X). 
Starting with the observed X value (which I call Xo), and its standard error 
(SE), just do the following 3-step calculation:

 1. Evaluate the expression, substituting the value of Xo – SE for X in the 
formula. Call the result Y1.

 2. Evaluate the expression, substituting the value of Xo + SE for X in the 
formula. Call the result Y2.

 3. The SE of Y is simply (Y2 – Y1)/2.

Here’s an example that shows how (and why) this process works.

Suppose you measure the diameter (d) of a coin as 2.3 centimeters, using a cali-
per or ruler that you know (from past experience) has an SE of ±0.2 centimeters. 
Now say that you want to calculate the area (A) of the coin from the measured 
diameter. If you know that the area of a circle is given by the formula A = (π/4)
d2, you can immediately calculate the area of the coin as (π/4)2.32, which you can 
work out on your calculator to get 4.15475628 square centimeters. Of course, 
you’d never report the area to that many digits because you didn’t measure the 
diameter very precisely. So just how precise is your calculated area? In other 
words, how does that ±0.2-centimeter SE of d propagate through the formula  
A = (π/4)d2 to give the SE of A?
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One way to answer this question would be to consider an interval of uncer-
tainty around the observed diameter (d) that goes from one SE below d to 
one SE above d. Interval of uncertainty isn’t an official statistical term, but it 
has a great abbreviation (IOU), so I use it in this section. The IOU, as I’ve just 
defined it, is always two SEs wide. In the coin example, the diameter’s IOU 
extends from 2.3 – 0.2 to 2.3 + 0.2, or from 2.1 to 2.5 centimeters.

Now figure out the areas corresponding to the diameters at the lower and 
upper ends of the IOU. Using 2.1 for d in the area formula gives A = 3.46, and 
using 2.5 for d gives A = 4.91. So the IOU for the area of the coin goes from 
3.46 to 4.91 square centimeters. The width of this IOU is 4.91 – 3.46, or 1.45 
square centimeters, which represents two SEs for the area. So the SE of the 
area is 1.45/2, or 0.725 square centimeter.

These calculations are illustrated in Figure 11-1. The curved line represents 
the formula A = (π/4) × d2. The dark arrows show how the measured diameter 
(2.3 centimeters), when plugged into the formula, produces a calculated area 
of about 4.15 square centimeters. The lighter colored gray arrows represent 
the lower and upper ends of the IOU and show how the IOU for the diameter 
produces an IOU for the area.

 

Figure 11-1:  
How uncer-

tainty in 
diameter 
becomes 

uncertainty 
in area.

 
 Illustration by Wiley, Composition Services Graphics

The SE of the area depends on the SE of the diameter and the slope of the 
curve. In fact, the SE of the area is equal to the SE of the diameter multiplied 
by the slope of the curve. I express this relationship as a formula later in this 
chapter.
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 Unfortunately, the simple procedure illustrated in this example can’t be gener-
alized to handle functions of two or more variables, such as calculating a per-
son’s body mass index from height and weight. Mathematicians have derived 
a very general formula for calculating (approximately) how SEs in one or more 
variables propagate through any expression involving those variables, but it’s 
very complicated, and to use it you have to be really good at calculus or you’ll 
almost certainly make mistakes along the way.

Fortunately, there are much better alternatives, all of which I cover in the 
rest of this chapter:

 ✓ You can use some simple error-propagation formulas for simple  
expressions.

 ✓ Even easier, you can go to a web page that does the error-propagation 
calculations for functions of one or two variables.

 ✓ You can use a very general simulation approach that can easily analyze 
how errors propagate through even the most complicated expressions, 
involving any number of variables.

Using Simple Error Propagation Formulas 
for Simple Expressions

Even though some general error-propagation formulas are very complicated 
(as I note in the preceding section), the rules for propagating SEs through 
some simple mathematical expressions are much easier to work with. Here 
are some of the most common simple rules.

 All the rules that involve two or more variables assume that those variables 
have been measured independently; they shouldn’t be applied when the two 
variables have been calculated from the same raw data.

Adding or subtracting a constant  
doesn’t change the SE
Adding (or subtracting) an exactly known numerical constant (that has no SE 
at all) doesn’t affect the SE of a number. So if x = 38 ± 2, then x + 100 = 138 ± 2. 
Likewise, if x = 38 ± 2, then x – 15 = 23 ± 2.
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Multiplying (or dividing) by a constant 
multiplies (or divides) the SE  
by the same amount
Multiplying a number by an exactly known constant multiplies the SE by that 
same constant. This situation arises when converting units of measure. For 
example, to convert a length from meters to centimeters, you multiply by 
exactly 100, so a length of an exercise track that’s measured as 150 ± 1 meters 
can also be expressed as 15,000 ± 100 centimeters.

For sums and differences: Add  
the squares of SEs together
When adding or subtracting two independently measured numbers, you 
square each SE, then add the squares, and then take the square root of the 
sum, like this:

For example, if each of two measurements has an SE of ±1, and those num-
bers are added together (or subtracted), the resulting sum (or difference) 
has an SE of , which is  or about ±1.4.

 A useful rule to remember is that the SE of the sum or difference of two 
equally precise numbers is about 40 percent larger than the SE of one of the 
numbers.

 When two numbers of different precision are combined (added or subtracted), 
the precision of the result is determined mainly by the less precise number 
(the one with the larger SE). If one number has an SE of ±1 and another has  
an SE of ±5, the SE of the sum or difference of these two numbers is ,  
which is , which is 5.1, or only slightly larger than the larger of the two  
individual SEs.
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For averages: The square root law takes over
The SE of the average of N equally precise numbers is equal to the SE of the 
individual numbers divided by the square root of N.

For example, if your lab analyzer can determine a blood glucose value with an 
SE of ±5 milligrams per deciliter (mg/dL), then if you split up a blood sample 
into four specimens, run them through the analyzer, and average the four 
results, the average will have an SE of , or ±2.5 mg/dL. The average of four 
numbers is twice as precise as (has one-half the SE of) each individual number.

For products and ratios: Squares of  
relative SEs are added together
The rule for products and ratios is similar to the rule for adding or subtract-
ing two numbers that I describe earlier in this chapter, except that you have 
to work with the relative SE instead of the SE itself. The relative SE of x is 
the SE of x divided by the value of x. So, a measured weight of 50 kilograms 
with an SE of 2 kilograms has a relative SE of 2/50, which is 0.04 or 4 percent. 
When multiplying or dividing two numbers, square the relative standard 
errors, add the squares together, and then take the square root of the sum. 
This gives you the relative SE of the product (or ratio). The formulas are

This formula may look complicated, but it’s actually very easy to use if you 
work with percent errors (relative precision). Then it works just like the “add 
the squares” rule for addition and subtraction. So if one number is known to 
have a relative precision of ± 2 percent, and another number has a relative 
precision of ± 3 percent, the product or ratio of these two numbers has a 
relative precision (in percentage) of , which is  or ±3.6 percent.

 Note that multiplying a number by an exactly known constant doesn’t change 
the relative SE. For example, doubling a number represented by x would 
double its SE, but the relative error (SE/x) would remain the same because 
both the numerator and the denominator would be doubled.
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For powers and roots: Multiply  
the relative SE by the power
For powers and roots, you have to work with relative SEs. When x is raised to 
any power k, the relative SE of x is multiplied by k; and when taking the kth 
root of a number, the SE is divided by k. So squaring a number doubles its rela-
tive SE, and taking the square root of a number cuts the relative SE in half.

For example, because the area of a circle is proportional to the square of its 
diameter, if you know the diameter with a relative precision of ±5 percent, 
you know the area with a relative precision of ±10 percent.

Take another look at the example from the beginning of this chapter. The diame-
ter of the coin is 2.3 ± 0.2 centimeters, for a relative precision of 0.2/2.3 = 0.087, or 
an 8.7 percent relative SE. And the area of the circle is calculated as 4.155 ± 0.725 
square centimeters for a relative precision of 0.725/4.155 = 0.1745, or a 17.45 
percent relative SE, which is almost exactly twice the relative SE of the diameter. 
Notice that the constant (π/4) is completely ignored because relative errors 
aren’t affected by multiplying or dividing by a known constant.

If k is negative (such as x–2, which is 1/x2), you ignore the minus sign and use 
the absolute value of k. So the relative SE of 1/x2 is twice the relative SE of x. 
A special case of this rule is the simple reciprocal: The relative SE of 1/x is 
equal to the relative SE of x. In other words, if x is precise to ±1 percent, then 
1/x is also precise to ±1 percent.

For example, under certain assumptions, the half-life (t1/2) of a drug in the body is 
related to the terminal elimination rate constant (ke) for the drug by the formula: 
t1/2 = 0.693/ke. A pharmacokinetic regression analysis (see Chapter 21) might 
produce the result that ke = 0.1633 ± 0.01644 (ke has units of “per hour”). You 
can calculate that t1/2 = 0.693/0.1633 = 4.244 hours. How precise is this half-life 
value? First you calculate the relative SE of the ke value as SE(ke )/ke, which is 
0.01644/0.1633 = 0.1007, or about 10 percent. Because ke has a relative precision 
of ± 10 percent, t1/2 also has a relative precision of ± 10 percent, because t1/2 is 
proportional to the reciprocal of ke (you can ignore the 0.693 entirely, because 
relative errors are not affected by multiplying or dividing by a known constant). 
If the t1/2 value of 4.244 hours has a relative precision of 10 percent, then the SE 
of t1/2 must be 0.4244 hours, and you report the half-life as 4.24 ± 0.42 hours.

Handling More Complicated Expressions
Sometimes you have an expression that can’t be handled by the simple rules 
described earlier in this chapter. The expression may be a very complicated 
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expression and may involve logarithms, exponentials, or trigonometric func-
tions. In these situations, you still have some options, as you find out in the 
following sections.

Using the simple rules consecutively
 A complicated expression can often be broken down into a sequence of 

simple operations, which can then be analyzed by the rules described earlier 
in this chapter. For example, you can calculate the SE of the result of xy + z 
from the SEs of x, y, and z by first using the product rule to get the SE of xy. 
Then you can use the addition rule with the SE of xy and the SE of z to get the 
SE of xy + z. But you have to be very careful going back and forth between 
SEs and relative SEs because you’re likely to make a mistake somewhere in 
the calculations. It’s much easier (and safer) to have the computer do all the 
calculations for you. Keep reading!

Checking out an online calculator
The web page at statpages.info/erpropgt.html calculates how preci-
sion propagates through almost any expression involving one or two variables. 
It even handles the case of two variables with correlated fluctuations. You 
simply enter the following items:

 ✓ The expression, using a fairly standard algebraic syntax (JavaScript)

 ✓ The values of the variable or variables

 ✓ The corresponding SEs

The web page then evaluates the general error-propagation formulas and 
shows you the value of the resulting number, along with its SE. Figure 11-2 
shows how the web page handles the simple coin-area example I use in the 
earlier section “Understanding the Concept of Error Propagation.”

 

Figure 11-2: 
Using the 
web page 
to calcu-
late error 

propagation 
through an 
expression 

with one 
variable.

 
 Screenshot courtesy of John C. Pezzullo, PhD

http://statpages.info/erpropgt.html
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The expression must refer to the variable (diameter) as x, and the squar-
ing of x must be indicated as x * x, because JavaScript doesn’t allow x2. The 
web page knows what the value of pi is. It calculates an area of 4.15 square 
centimeters and an SE of 0.72 square centimeter, in good agreement with the 
calculations I describe earlier.

The web page can also analyze error propagation through expressions 
involving two measured values. Suppose you want to calculate body mass 
index (BMI, in kilograms per square meter) from a measured value of 
height (in centimeters) and weight (in kilograms), using the formula: BMI = 
10,000weight/height2. Suppose the measured height is 175 ± 1 centimeter,  
and the weight is 77 ± 1 kilograms (where the ± numbers are the SEs). The 
BMI is easily calculated as 10,000 × 77/1752, or 25.143 kg/m2. But what’s  
the SE of that BMI? Figure 11-3 shows how the web page performs that  
calculation.

 

Figure 11-3: 
Using the 
web page 
to calcu-
late error 

propagation 
through an 
expression 

with two 
variables.

 
 Screenshot courtesy of John C. Pezzullo, PhD

The page requires that height and weight be called x and y, respectively.  
I entered the square of the height as (x * x), because JavaScript doesn’t  
allow x2. I entered 0 for the error-correlation term because height and  
weight are two independent measurements (using different instruments).  
The resulting BMI produced by the web page was 25.1 ± 0.4 kilograms per 
square meter.
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Simulating error propagation —  
easy, accurate, and versatile

 Finally, I briefly describe what is probably the most general error-propagation 
technique (also called Monte-Carlo analysis). You can use this technique to 
solve many difficult statistical problems. Calculating how SEs propagate 
through a formula for y as a function of x works like this:

 1. Generate a random number from a normal distribution whose mean 
equals the value of x and whose standard deviation is the SE of x.

 2. Plug the x value into the formula and save the resulting y value.

 3. Repeat this step a large number of times.

  The resulting set of y values will be your simulated sampling distribution 
for y.

 4. Calculate the SD of the y values.

  The SD of the simulated y values is your estimate of the SE of y. 
(Remember, the SE of a number is the SD of the sampling distribution for 
that number.)

 You can perform these calculations very easily using the free program 
Statistics 101 (see Chapter 4). With very little extra effort, this software can 
give you the confidence interval and even a histogram of the simulated areas. 
And simulation can easily and accurately handle non-normally distributed 
measurement errors. For the coin-area example, the program (only four lines 
long) generates the output shown in Figure 11-4. The SE of the coin area from 
this simulation is about 0.72, in good agreement with the value obtained by 
the other methods I describe earlier in this chapter. 

 

Figure 11-4:  
Using 

Statistics 
101 to simu-

late error 
propagation.

 
 Screenshot courtesy of John C. Pezzullo, PhD



Part III 
Comparing Groups

 Illustration by Wiley, Composition Services Graphics

 Discover the uses and steps of the simulation approach in a free article at  
www.dummies.com/extras/biostatistics.

http://www.dummies.com/extras/biostatistics


In this part . . .
 ✓ Compare averages between two or more groups, using t tests, 

ANOVAs, and nonparametric tests.
 ✓ Compare proportions between two or more groups, using the 

chi-square and Fisher Exact tests.
 ✓ Analyze fourfold tables (also known as 2x2 cross-tabs) to get 

relative risks, odds ratios, and loads of other useful measures 
of association.

 ✓ Compare event rates, also known as person-time data.
 ✓ Test for equivalence between two products (like generic 

and brand-name drugs) and for noninferiority with respect 
to an established treatment (when you can’t compare to a 
placebo).



Chapter 12

Comparing Average Values 
between Groups 

In This Chapter
▶ Determining which tests should be used in different situations
▶ Preparing your data, running tests, and interpreting the output
▶ Estimating the sample size you need to compare average values

C 
omparing average values between groups of numbers is part of the analysis 
of almost every biological experiment, and over the years statisticians have 

developed dozens of tests for this purpose. These tests include several differ-
ent flavors of the Student t test, analyses of variance (ANOVA) and covariance 
(ANCOVA), and a dizzying collection of tests with such exotic-sounding names 
as Welch, Wilcoxon, Mann-Whitney, Kruskal-Wallis, Friedman, Tukey-Kramer, 
Dunnett, and Newman-Keuls, to name just a few. The number of possibilities is 
enough to make your head spin, and it leaves many researchers with the uneasy 
feeling that they may be using an inappropriate statistical test on their data.

In this chapter, I guide you through the menagerie of statistical tests for com-
paring groups of numbers, explaining why so many tests are out there, which 
ones are right for which situations, how to run them on a computer, and how 
to interpret the output. I focus on those tests that are usually provided by 
modern statistical programs (like those in Chapter 4).

Knowing That Different Situations  
Need Different Tests

You may wonder why there are so many tests for such a simple task as com-
paring averages. Well, “comparing averages” doesn’t refer to a single task; it’s 
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a broad term that can apply to a lot of situations that differ from each other 
on the basis of:

 ✓ Whether you’re looking at changes over time within one group of subjects 
or differences between groups of subjects (or both)

 ✓ How many time points or groups of subjects you’re comparing

 ✓ Whether or not the numeric variable you’re comparing is nearly normally 
distributed

 ✓ Whether or not the numbers have the same spread (standard deviation) 
in all the groups you’re comparing

 ✓ Whether you want to compensate for the possible effects of some other 
variable on the variable you’re comparing

These different conditions can occur in any and all combinations, so there 
are lots of possible situations. In the following sections, I look at the kinds of 
comparisons you may frequently encounter when analyzing biological data 
and tell you which tests are appropriate for each kind.

Comparing the mean of a group of  
numbers to a hypothesized value
Comparison of an observed mean to a particular value arises in studies where, 
for some reason, you can’t have a control group (such as a group taking a  
placebo or an untreated group), so you have to compare your results to  
a historical control, such as information from the literature. It also comes up 
when you’re dealing with data like test scores that have been scaled to have 
some specific mean in the general population (such as 100 for IQ scores).

This data is usually analyzed by the one-group Student t test that I describe 
in the later section “Surveying Student t tests.” For non-normal data, the 
Wilcoxon Signed-Ranks (WSR) test can be used instead.

Comparing two groups of numbers
Perhaps the most common situation is one in which you’re comparing two 
groups of numbers. You may want to compare some proposed biomarker of 
a medical condition between a group of subjects known to have that condi-
tion and a group known to not have it. Or you may want to compare some 
measure of drug efficacy between subjects treated with the drug and subjects 
treated with a placebo. Or maybe you want to compare the blood level of 
some enzyme between a sample of males and females.
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 Such comparisons are generally handled by the famous unpaired or “indepen-
dent sample” Student t test (usually just called the t test) that I describe in the 
later section “Surveying Student t tests.” But the t test is based on two 
assumptions about the distribution of data in the two groups:

 ✓ The numbers are normally distributed (called the normality assump-
tion). For non-normal data you can use the nonparametric Mann-Whitney 
(M-W) test, which your software may refer to as the Wilcoxon Sum-of-Ranks 
(WSOR) test. The WSOR was developed first but was restricted to equal-
size groups; the M-W test generalized the WSOR test to work for equal or 
unequal group sizes.

 ✓ The standard deviation (SD) is the same for both groups (called the equal-
variance assumption because the variance is simply the square of the SD; 
thus, if the two SDs are the same, the two variances will also be the same). 
Chapter 8 provides more information about standard deviations. If the two 
groups have noticeably different variances (if, for example, the SD of one 
group is more than 1.5 times as large as the SD of the other), then the t test 
may not give reliable results, especially with unequal size groups. Instead, 
you can use a special modification to the Student t test, called the Welch 
test (also called the Welch t test, or the unequal-variance t test; see the later 
section “Surveying Student t tests” for details).

Comparing three or more groups of numbers
Comparing three or more groups of numbers is an obvious extension of 
the two-group comparison in the preceding section. For example, you may 
compare some efficacy endpoint, like response to treatment, among three 
treatment groups (for example, drug A, drug B, and placebo). This kind of com-
parison is handled by the analysis of variance (ANOVA) that I describe later in 
this chapter. When there is one grouping variable, like treatment, you have a 
one-way ANOVA. If the grouping variable has three levels (like drug A, drug B, 
and placebo in the earlier example), it’s called a one-way, three-level ANOVA.

The null hypothesis of the one-way ANOVA is that all the groups have the 
same mean; the alternative hypothesis is that at least one group is differ-
ent from at least one other group. The ANOVA produces a single p value, 
and if that p is less than your chosen criterion (such as p < 0.05), you can 
conclude that something’s different somewhere (see Chapter 3 for more info 
on hypothesis testing and p values). But the ANOVA doesn’t tell you which 
groups are different from which others. For that, you need to follow a signifi-
cant ANOVA with one or more so-called post-hoc tests (described later in this 
chapter), which look for differences between each pair of groups.

You can also use the ANOVA to compare just two groups; this one-way, 
two-level ANOVA produces exactly the same p value as the classic unpaired 
equal-variance Student t test.
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Analyzing data grouped on  
several different variables
The ANOVA is a very general method; it can accommodate several grouping 
variables at once, such as comparing treatment response among different 
treatment groups, genders, and medical conditions. An ANOVA involving 
three different grouping variables is called a three-way ANOVA.

 In ANOVA terminology, the term way refers to how many grouping variables 
are involved, and the term level refers to the number of different groups 
within any one grouping variable.

Like the t test, the ANOVA also assumes normally distributed numbers with 
equal standard deviations in all the groups. If your data is non-normal, you 
can use the Kruskal-Wallis test instead of the one-way ANOVA, and if the 
groups have very dissimilar standard deviations, you can use the Welch 
unequal-variance ANOVA. You can use a Friedman test instead of a two-way 
ANOVA if only one of the two categorical variables is of interest, and the 
other is just a “nuisance” variable whose effect you want to mathematically 
compensate for (see the next section).

Adjusting for a “nuisance variable”  
when comparing numbers
Sometimes you know that the variable you’re comparing (like reduction in 
blood pressure) is influenced not only by which group the subject belongs 
to (for example, antihypertension drug or placebo), but also by one or more 
other variables, such as age, medical condition, smoking status, and so forth. 
These variables may not be evenly distributed across the groups you’re  
comparing (even in a randomized trial).

You can mathematically compensate for the effects of these “nuisance”  
variables, more properly called confounders (variables that can affect the  
outcome and may not be evenly balanced between groups), by using an 
analysis of covariance (ANCOVA). An ANCOVA is like an ANOVA in that it 
compares the mean value of an outcome variable between two or more 
groups. But an ANCOVA also lets you specify one or more covariates (as 
they’re called in ANCOVA lingo) that you think may influence the outcome. 
The ANCOVA tells you whether the mean of the outcome variable is different 
between groups after compensating (that is, mathematically cancelling out) 
any influence of the covariates on the outcome.
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Comparing sets of matched numbers
All the t tests, ANOVAs, ANCOVAs, and their nonparametric counterparts 
previously described deal with comparisons between two or more groups 
of independent samples of data, such as different groups of subjects, where 
there’s no logical connection between a specific subject in one group and a 
specific subject in another group. But you often want to compare sets of data 
where precisely this kind of pairing exists. Matched-pair data comes up in 
several situations (illustrated here for two sets of data, but applicable to any 
number of sets):

 ✓ The values come from the same subject, but at two or more different times, 
such as before and after some kind of treatment, intervention, or event.

 ✓ The values come from a crossover clinical trial (see Chapter 6 for more 
about this structure), in which the same subject receives two or more 
treatments at two or more consecutive phases of the trial.

 ✓ The values come from two or more different individuals who have been 
paired, or matched, in some way. They may be twins or they may be 
matched on the basis of having similar characteristics (such as age, 
gender, and so on).

Comparing matched pairs
Paired comparisons are usually handled by the paired student t test that I 
describe later in this chapter. If your data isn’t normally distributed, you can 
use the nonparametric Wilcoxon Signed-Ranks test instead.

 The paired Student t test and the one-group Student t test are really the same 
test. When running a paired t test, you first calculate the difference between 
each pair of numbers (for example, subtract the pretreatment value from the 
post-treatment value), and then test those differences against the hypoth-
esized value 0 using a one-group test.

Comparing three or more matched numbers
When you have three or more matched numbers, you can use repeated-
measures analysis of variance (RM-ANOVA). The RM-ANOVA can also be used 
when you have only two groups; then it gives exactly the same p value as the 
classic paired Student t test.

If the data is non-normally distributed, you can use the nonparametric 
Friedman test. (Be careful — there are several different Friedman tests, and 
this isn’t the same one that’s used in place of a two-way ANOVA!)
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 Another problem to be aware of with RM-ANOVA and more than two levels is 
the issue of sphericity — an extension of the idea of equal variance to three or 
more sets of paired values. Sphericity refers to whether the paired differences 
have the same variance for all possible pairs of levels. Sphericity is assessed 
by the Mauchly test, and if the data is significantly nonspherical, special adjust-
ments are applied to the RM-ANOVA by the software.

Comparing within-group  
changes between groups
Comparing within-group changes between groups is a special situation, 
but one that comes up very frequently in analyzing data from clinical trials. 
Suppose you’re testing several arthritis drugs against a placebo, and your 
efficacy variable is the subject’s reported pain level on a 0-to-10 scale. You 
want to know whether the drugs produce a greater improvement in pain level 
than the placebo. So you record each subject’s pain level before starting the 
treatment (known as the baseline or pretreatment) and again at the end of the 
treatment period (post-treatment).

One obvious way to analyze this data would be to subtract each subject’s 
pretreatment pain level from the post-treatment level to get the amount of 
change resulting from the treatment, and then compare the changes between 
the groups with a one-way ANOVA (or unpaired t test if there are only two 
groups). Although this approach is statistically valid, clinical trial data usu-
ally isn’t analyzed this way; instead, almost every clinical trial nowadays uses 
an ANCOVA to compare changes between groups.

In an ANCOVA, the outcome (called the dependent variable) being compared 
between groups is not the change from pre- to post-treatment, but rather 
the post-treatment value itself. The pretreatment value is entered into the 
ANCOVA as the covariate. In effect, the ANCOVA subtracts a multiple of the 
pretreatment value from the post-treatment value before comparing the  
differences. That is, instead of defining the change as (Post – Pre), the 
ANCOVA calculates the change as (Post – f × Pre), where f is a number that 
the ANCOVA figures out. The f multiplier can be greater or less than 1; if it 
happens to come out exactly equal to 1, then the ANCOVA is simply compar-
ing the pre-to-post change, just like the ANOVA.

Statisticians prefer the ANCOVA approach because it’s usually slightly more 
efficient than the simple comparison of changes, and also because it can 
compensate (at least partially) for several other complications that often 
afflict clinical trial data.
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 An ANCOVA can be considered a form of multiple linear regression (see 
Chapter 19), and, in fact, all the classical methods I describe earlier (paired 
and unpaired t tests, ANOVAs, and ANCOVAs) can be formulated as multiple 
regression problems. Some statistical packages bundle some or all of these 
analyses into a single analysis called the general linear model.

Trying the Tests Used for  
Comparing Averages

After you see what tests are used when, you can take a closer look at the dif-
ferent kinds of tests — the basic concepts behind them, how to run them, 
and how to interpret the output. The following sections cover a variety of 
Student t tests, the ANOVA, and nonparametric tests.

 I don’t clutter this chapter with pages of mathematical formulas for the fol-
lowing tests, because you’ll probably never have to do one of these tests  
by hand. If you really want to see the formulas, you can find them in most  
statistics textbooks and on the Internet. Just enter the name of the test in 
your search engine’s browser.

Surveying Student t tests
In this section, I present the basic idea of a Student t test, show the compu-
tational steps common to the different kinds of t tests (one-group, paired, 
unpaired equal- or unequal-variance), and explain the computational differ-
ences between the different types. Then I describe how to run the t tests 
using typical statistical software and show how to interpret the output pro-
duced by one software package (OpenStat).

Understanding the basic idea of a t test
 All the Student t tests for comparing sets of numbers are trying to answer the 

same question, “Is the observed difference larger than what you would expect 
from random fluctuations alone?” The t tests all answer this question in the 
same general way, which you can think of in terms of the following steps:

 1. Calculate the difference (D) between the groups or the time points.
 2. Calculate the precision of the difference (the magnitude of the random 

fluctuations in that difference), in the form of a standard error (SE, 
described in Chapter 9) of that difference.
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 3. Calculate a test statistic (t), which expresses the size of the difference 
relative to the size of its standard error.

  That is: t = D/SE.

 4. Calculate the degrees of freedom (df) of the t statistic.

  Degrees of freedom is a tricky concept; as a practical matter, when deal-
ing with t tests, it’s the total number of observations minus the number 
of means you calculated from those observations.

 5. Calculate the p value (how likely it is that random fluctuations alone 
could produce a t value at least as large as the value you just calcu-
lated) using the Student t distribution.

The Student t statistic is always calculated as D/SE; each kind of t test (one-
group, paired, unpaired, Welch) calculates D, SE, and df in a way that makes 
sense for that kind of comparison, as summarized in Table 12-1.

Table 12-1 How t Tests Calculate Difference, Standard Error,  
 and Degrees of Freedom

One-Group Paired Unpaired t 
Equal Variance

Welch t 
Unequal Variance

D Difference 
between mean 
of observations 
and a hypoth-
esized value (h)

Mean of 
paired  
differences

Difference 
between means 
of the two groups

Difference 
between means 
of the two groups

SE SE of the 
observations

SE of paired 
differences

SE of difference, 
based on a pooled 
estimate of SD 
within each group

SE of difference, 
from SE of each 
mean, by propa-
gation of errors

df Number of 
observations – 1

Number of 
pairs – 1

Total number of 
observations – 2

“Effective” df, 
based on the size 
and SD of the two 
groups

Running a t test
 Almost all modern statistical software packages can perform all four kinds of t 

tests (see Chapter 4 for more about these packages). Preparing your data for a 
t test is quite easy:

 ✓ For the one-group t test, you need only one column of data, contain-
ing the variable whose mean you want to compare to the hypothesized 
value (H). The program usually asks you to specify a value for H and 
assumes 0 if you don’t specify it.
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 ✓ For the paired t test, you need two columns of data representing the 
pair of numbers (before and after, or the two matched subjects). For 
example, if you’re comparing the before and after values for 20 subjects, 
or values for 20 sets of twins, the program will want to see a data file 
with 20 rows and two columns.

 ✓ For the unpaired test (Student t or Welch), most programs want you to 
have all the measured values in one variable, in one column, with a sepa-
rate row for every observation (regardless of which group it came from). 
So if you were comparing test scores between a group of 30 subjects and 
a group of 40 subjects, you’d have a file with 70 rows and 2 columns. One 
column would have the test scores, and the other would have a numeri-
cal or text value indicating which group each subject belonged to.

Interpreting the output from a t test
Figure 12-1 shows the output of an unpaired t test from the OpenStat pro-
gram (which you can find at www.statprograms4u.com/OpenStatMain.
htm). Other programs usually provide the same kind of output, although it 
may be arranged and formatted differently.

 

Figure 12-1: 
OpenStat 

output from 
an unpaired 

Student t 
test.

 
 Illustration by Wiley, Composition Graphics Services

The first few lines provide the usual summary statistics (the mean, variance, 
standard deviation, standard error of the mean, and count of the number of 
observations) for each group. The program gives the output for both kinds of 
unpaired t tests (you don’t even have to ask):

 ✓ The classic Student t test (which assumes equal variances)

 ✓ The Welch test (which works for unequal variances)

For each test, the output shows the value of the t statistic, the p value (which 
it calls probability), and the degrees of freedom (df), which, for the Welch 
test, might not be a whole number. The program also shows the difference 
between the means of the two groups, the standard error of that difference, 

http://www.statprograms4u.com/OpenStatMain.htm
http://www.statprograms4u.com/OpenStatMain.htm
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and the 95 percent confidence interval around the difference of the means 
(see Chapter 10 for details on confidence intervals). The program leaves it up 
to you to use the results from the appropriate test (Student t or Welch t) and 
ignore the other test’s results.

 But how do you know which set is appropriate? The program very helpfully 
performs what’s called an F test for equal variances between the two groups. 
Look at the p value from this F test:

 ✓ If p > 0.05, use the “Assuming equal variances” results.

 ✓ If p ≤ 0.05, use the “Assuming unequal variances” results.

In this example, the F test gives a p value of 0.373, which (being greater than 
0.05) says that the two variances are not significantly different. So you can 
use the classic equal variances t test, which gives a p value of 0.4353. This p 
value (being greater than 0.05) says that the means of the two groups are not 
significantly different. In this case, the unequal variances (Welch) t test also 
gives a nonsignificant p value of 0.4236 (the two t tests often produce similar 
p values when the variances are nearly equal).

Assessing the ANOVA
In this section, I present the basic concepts underlying the analysis of vari-
ance (ANOVA) for comparing three or more groups of numbers and describe 
some of the more popular post-hoc tests. Then I show how to run an ANOVA 
using the OpenStat software package and how to interpret the output.

Understanding the basic idea of an ANOVA
When comparing two groups (A and B), you test the difference (A – B) between 
the two groups with a Student t test. So when comparing three groups (A, B, 
and C) it’s natural to think of testing each of the three possible two-group com-
parisons (A – B, A – C, and B – C) with a t test. But running an exhaustive set of 
two-group t tests can be risky, because as the number of groups goes up, the 
number of two-group comparisons goes up even more. The general rule is that 
N groups can be paired up in N(N – 1)/2 different ways, so in a study with six 
groups, you’d have 6 × 5/2, or 15 two-group comparisons.

In Chapter 6, I explain that when you do a lot of significance tests, you run 
an increased chance of making a Type I error — falsely concluding signifi-
cance. This type of error is also called an inflated alpha. So if you want to 
know whether a bunch of groups all have consistent means or whether one 
or more of them are different from one or more others, you need a single test 
producing a single p value that answers that question.

The one-way ANOVA is exactly that kind of test. It doesn’t look at the differ-
ences between pairs of group means; instead, it looks at how the entire col-
lection of group means is spread out and compares that to how much you 
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might expect those means to spread out if all the groups were sampled from 
the same population (that is, if there were no true difference between the 
groups). The result of this calculation (I’ll spare you the details) is expressed 
in a test statistic called the F ratio (designated simply as F), the ratio of how 
much variability there is between the groups relative to how much there is 
within the groups. If the null hypothesis is true (in other words, if no true  
difference exists between the groups), then the F ratio should be close to 
1, and its sampling fluctuations should follow the Fisher F distribution (see 
Chapter 25), which is actually a family of distribution functions characterized 
by two numbers:

 ✓ The numerator degrees of freedom: This number is often designated as 
dfN or df1, which is one less than the number of groups.

 ✓ The denominator degrees of freedom: This number is designated as dfD or 
df2, which is the total number of observations minus the number of groups.

The p value can be calculated from the values of F, df1, and df2, and the soft-
ware will perform this calculation for you. If the p value from the ANOVA is 
significant (less than 0.05 or your chosen alpha level), then you can conclude 
that the groups are not all the same (because the means varied from each 
other by too large an amount).

Picking through post-hoc tests
But now you’re back to your original question: Which groups are different 
from which others? Over the years, statisticians have developed a lot of tests 
for comparing means between several groups. These are called post-hoc tests 
(post hoc is Latin for “after this,” meaning “after this ANOVA,” and post-hoc 
tests are typically done after an ANOVA comes out significant). Most statisti-
cal packages that do ANOVAs offer one or more post-hoc tests as optional 
output. The packages (and many elementary statistics textbooks) may state, 
or at least imply, that these post-hoc tests guard against increased Type I 
error rates (an inflated alpha), but the truth isn’t that simple. Controlling 
alpha to 0.05 across a lot of hypothesis tests is not a trivial task — a lot of 
subtle issues arise, which statisticians are still grappling with today. I could 
devote the rest of this book to that topic alone, but instead, I just describe 
some of the tests that most statistical programs offer as optional output from 
an ANOVA and make a few comments to help you choose which one to use.

 ✓ The Bonferroni test analyzes each pair of groups with a t test, but con-
trols the overall alpha to 0.05 by requiring the p value for any compari-
son to be less than 0.05 divided by the total number of comparisons: 
N(N – 1)/2, where N is the number of groups.

  Note: The Bonferroni test really shouldn’t be used as a post-hoc test 
following an ANOVA; it’s more appropriate when testing completely dif-
ferent hypotheses, not a set of interrelated ones. But many statistical 
packages offer it as a post-hoc test.
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 ✓ Fisher’s LSD (least significant difference) test analyzes all pairs of 
groups, but it doesn’t properly control the overall alpha level across all 
comparisons. (As great a statistician as R. A. Fisher was, he blew it on 
this one.) Don’t use LSD!

 ✓ Tukey’s HSD (“honestly” significant difference) test analyzes all pairs 
of groups, but it correctly controls alpha across all the comparisons. 
It’s a good, safe, “workhorse” post-hoc test, but it’s limited to equal-size 
groups (called balanced groups).

 ✓ The Tukey-Kramer test is a generalization of the original Tukey HSD test 
to handle different-size (unbalanced) groups.

 ✓ Scheffe’s test compares all pairs of groups and also lets you bundle 
certain groups together, if doing so makes physical sense. For example, 
if you have three treatment groups, A = Drug A, B = Drug B, and C = 
Placebo, you may want to determine whether the drug (regardless of 
which drug) is different from the placebo; that is, you may want to test A 
and B as one group against C. Scheffe’s test is the most conservative and 
safest test to use if you absolutely hate Type I errors, but it’s less power-
ful than the other tests, so you’ll miss real differences more often.

 ✓ Dunnett’s test is used when one of the groups is special — a reference 
group (typically placebo) against which you want to test each of the 
other groups. Because it doesn’t have to compare as many pairs of 
groups as the other post-hoc tests, the Dunnett test is more powerful at 
detecting differences between the reference group and the others.

 For a more detailed treatment of post-hoc tests, go to the excellent GraphPad 
website: www.graphpad.com and search within that site for post hoc.

Running an ANOVA
Running a one-way ANOVA is no more difficult than running an unpaired 
Student t test (see the earlier section “Running a t test”). You create two 
columns of data — one containing the numerical values being compared and 
another identifying the group the subject belongs to (just as with the t test, 
but now the group variable can have more than two levels). Then you specify 
what optional outputs you want to see (descriptive summaries for each 
group, tests for equal variance, graphs of group means, post-hoc tests [if any] 
you’d like to have, and so on).

Interpreting the output of an ANOVA
Figure 12-2 shows the output from an ANOVA run on a data set of pain scores 
of 40 subjects in three treatment groups (a placebo and two drugs), using 
OpenStat statistical software. Other programs usually provide the same kind 
of output, although it may be arranged and formatted differently.

The output begins with what’s called a variance table, most of which you 
don’t have to pay much attention to. You can spot the two degrees-of-
freedom numbers: 2 between groups (# of groups – 1) and 37 within groups 

http://www.graphpad.com
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(# of observations – # of groups). The test statistic for the ANOVA is the 
Fisher F ratio (6.61 in this table). The most important number in the table 
is the p value (the probability that random fluctuations would produce at 
least as large an F value as what your data produced), which is designated as 
“PROB.>F” in the table. The value 0.00 (which the program rounded off from a 
more accurate value of 0.0035) means that you can reject the null hypothesis 
(all group means are equal) and conclude that there’s a difference some-
where among the groups.

 

Figure 12-2: 
OpenStat 
output for 
one-way 

analysis of 
variance.

 
 Illustration by Wiley, Composition Graphics Services
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The ANOVA table is followed by a simple summary table of the mean, variance, 
standard deviation, and count of the observations in each group. Looking at the 
MEAN column, you see that Groups 2 and 3 have fairly similar averages (5.08 and 
4.65, respectively), while Group 1 is noticeably higher (6.39). So Group 1 seems 
to be different from the others — but could this apparent difference be merely 
the result of random fluctuations? The rest of the output answers that question.

The summary table is followed by a test for homogeneity of variances 
(whether all groups have nearly the same standard deviations). OpenStat 
performs several variance tests (software packages often give you more 
than you want or need); the important one here is the Bartlett test. The last 
number in this row is the p value of 0.635, indicating that the variances (and 
therefore the standard deviations) do not differ significantly among the three 
groups, so you can use the ordinary ANOVA with confidence.

Finally, there are several post-hoc tests, comparing Group 1 to Group 2, 
Group 1 to Group 3, and Group 2 to Group 3. I had asked the program to per-
form the Scheffe, Tukey-Kramer, and Bonferroni tests from among the several 
that it offered. OpenStat is nice enough to interpret the tests for you and tell 
you, at the end of each row of output, whether the difference between the 
means for that pair of groups is significant or not.

In this example, all three post-hoc tests reached the same conclusions. That 
doesn’t always happen, but it’s very comforting when it does. All three tests 
agree that Groups 1 and 2 are different; Groups 1 and 3 are different, and 
Groups 2 and 3 are not significantly different. So Group 1, with its suspi-
ciously high mean of 6.39, really is different from Groups 2 and 3, with their 
lower means. (By the way, in this example, Group 1 was the placebo.)

Running Student t tests and ANOVAs  
from summary data

 You don’t have to have the individual observations to perform a t test or one-
way ANOVA; these tests need only the summary statistics (counts, means, and 
standard deviations or standard errors) of the numbers in each group (or of 
the paired differences, for the paired t test). This fact can be very useful when 
you want to perform these tests on published results, where only the sum-
mary statistics are available. Here are two online calculators you can use:

 ✓ StatPages.info/anova1sm.html lets you run an unpaired t test or a 
one-way ANOVA from summary data (count, mean, and standard devia-
tion or standard error) for two or more (up to eight) groups. The program 
will produce an ANOVA table with the p value. (Keep in mind that an 
ANOVA with only two groups is identical to an unpaired Student t test.)

http://StatPages.info/anova1sm.html
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 ✓ graphpad.com/quickcalcs/ttest1.cfm lets you run paired and 
unpaired (equal or unequal variance) t tests from summary data or from 
individual observations (up to 50 rows).

The site Statpages.info lists many other web pages that perform various 
kinds of t tests and ANOVAs.

Running nonparametric tests
Running a nonparametric test (like the Wilcoxon, Mann-Whitney, Kruskal-
Wallis, or Friedman test) is generally no more difficult than running the corre-
sponding parametric t test or ANOVA. The data is set up in exactly the same 
way — one column for a one-group test, a pair of columns for a paired test; 
two columns (one numeric and one categorical) for unpaired tests, and so 
on. And you specify the variables to the program using commands or dialog 
boxes that are usually structured in the same way.

The nonparametric tests generally don’t compare group means or test for 
a nonzero mean difference; rather, they compare group medians or test for 
a median difference of zero. So the output of a nonparametric test will look 
slightly different from the output of the corresponding parametric test — you’ll 
probably see medians instead of means, and centiles instead of standard devia-
tions. And you won’t see any t or F values, but you should be able to find the 
p value indicating whether the groups have significantly different medians (or 
whether the median difference is significantly different from zero).

Estimating the Sample Size You  
Need for Comparing Averages

As you find out in the following sections, there are several ways to estimate 
the sample size you need in order to have a good chance of getting a signifi-
cant result on a t test or an ANOVA. (Check out Chapter 3 for a refresher on 
the concepts of power and sample size.)

Simple formulas
Chapter 26 provides a set of simple formulas that let you estimate how 
many subjects you need for several kinds of t tests and ANOVAs. As with all 
sample-size calculations, you need to specify the effect size of importance 
(the smallest between-group difference that’s worth knowing about), and you 
need an estimate of the amount of random variability in your data (the within-
group standard deviation).

http://graphpad.com/quickcalcs/ttest1.cfm
http://Statpages.info
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Software and web pages
Many modern statistics programs (SPSS, SAS, R, and so on; see Chapter 4) 
provide power and sample-size calculations for most of the standard sta-
tistical tests. The PS program performs these calculations for paired and 
unpaired t tests, and the free G-Power program handles all the t tests and 
many kinds of ANOVAs and ANCOVAs.

 The website StatPages.info lists several dozen web pages that perform 
power and sample-size calculations for t tests and ANOVAs.

A sample-size nomogram
In Chapter 3, I explain that for any statistical test, four quantities (called 
statistical study design parameters) — power, alpha level, sample size, and 
effect size — are interrelated; you can calculate any one of them if you know 
the other three. Figure 12-3 shows a nomogram (also called an alignment 
chart) that lets you easily calculate any power, sample size, or effect size for 
an unpaired t test or a one-way ANOVA involving three, four, or five groups. It 
assumes a 0.05 alpha level (p < 0.05 is considered significant). You simply lay 
a ruler (or stretch a string) across the three scales, intersecting two scales at 
the values of the two design parameters you know, and then read the value 
of the third parameter where the string crosses the third scale. (Effect size is 
expressed as the ratio of the difference worth knowing about divided by the 
within-group standard deviation; this ratio is often called delta/sigma.) Here 
are some examples:

 ✓ Find the sample size needed to provide 80 percent power for a t test 
comparing two groups if the between-group difference you’re interested 
in is equal to one-half the within-group standard deviation (a 0.5 delta/
sigma effect size). Lay the ruler across the 0.5 on the right-side scale 
(effect size), and across the 80 on the left side of the middle scale (for 
80 percent power on a t test). The ruler crosses the left-side scale at the 
value 62, meaning that you need 62 analyzable subjects in each group 
(124 analyzable subjects altogether).

 ✓ Find the effect size (the true between-group difference) that would give 
you a 90 percent chance of getting a significant t test when comparing 
two groups of 40 subjects each, if the variable has a standard deviation 
of 25. Lay the ruler across 40 on the left scale and 90 on the left side of 
the middle scale. The ruler crosses the right scale at about 0.74, which 
means that the effect size (difference/SD) is 0.74, so the difference is 0.74 
× 25, or about 18.

http://statpages.info/
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 ✓ Find the power of an ANOVA comparing four groups of 20 subjects 
each, when the true effect size (largest mean – smallest mean)/within-
group SD is 0.6. Laying the ruler across 20 on the left scale and 0.6 on the 
right scale, read the value 47 on the right side of the middle scale (for an 
ANOVA). A study with four groups of 20 subjects is underpowered (pro-
viding only 47 percent power) to obtain a significant result in an ANOVA 
when the true means of the groups span a range of only 0.6 times the 
within-group SD.

 

Figure 12-3:  
A nomo-
gram to 
perform 

power cal-
culations for 
the Student 

t test and 
analysis of 

variance 
(ANOVA).

 
 Illustration by Wiley, Composition Graphics Services
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Chapter 13

Comparing Proportions and 
Analyzing Cross-Tabulations

In This Chapter 
▶ Testing for association between categorical variables with the Pearson chi-square and 

Fisher Exact tests
▶ Adjusting for confounders with the Mantel-Haenszel test for stratified fourfold tables
▶ Spotting trends across ordinal (sequenced) categories with the Kendall tau test
▶ Estimating sample sizes for tests of association

S 
uppose you’re conducting a clinical trial of a new treatment for an acute 
disease with a high mortality rate, for which no effective treatment cur-

rently exists. You study 100 consecutive subjects with this condition and 
randomly assign 60 of them to receive the new treatment and 40 to receive a 
placebo or sham treatment. Then you record whether each subject lives or 
dies. Your data file has two dichotomous categorical variables: the treatment 
group (drug or placebo) and the outcome (lives or dies).

You find that 30 of the 40 untreated (placebo) subjects died (a 75 percent mor-
tality rate), while only 27 of the 60 treated subjects died (45 percent mortality). 
The drug appears to reduce mortality by about 30 percentage points. But can 
you be sure this isn’t just a random sampling fluctuation?

Data from two (possibly associated) categorical variables is generally summa-
rized as a cross-tabulation (also called a cross-tab or a two-way table). The rows of 
the cross-tab represent the different categories (or levels) of one variable, and 
the columns represent the different levels of the other variable. The cells of the 
table contain the count of the number of subjects with the indicated levels for 
the row and column variables. If one variable can be thought of as the “cause” 
or “predictor” of the other, the cause variable becomes the rows, and the “out-
come” or “effect” variable becomes the columns. If the cause and outcome vari-
ables are both dichotomous (have only two levels), as they are in this example, 
then the cross-tab has two rows and two columns (and therefore four cells  
of counts) and is referred to as a 2-by-2 (or 2x2) cross-tab, or a fourfold table. 
Cross-tabs are usually displayed with an extra row at the bottom and an extra 
column at the right to contain the sums of the cells in the rows and columns of 
the table. These sums are called marginal totals, or just marginals.
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Comparing proportions based on a fourfold table is the simplest example of 
testing the association between two categorical variables. More generally, 
the variables can have any number of categories, so the cross-tab can be 
larger than 2x2, with many rows and many columns. But the basic question 
to be answered is always the same: Is the spread of numbers across the col-
umns so different from one row to the next that the numbers can’t be reason-
ably explained away as random fluctuations?

In this chapter, I describe a variety of tests you can use to answer this ques-
tion: the Pearson chi-square test, the Fisher Exact test, the Mantel-Haenszel 
test, and the Kendall test. I also explain how to estimate power and sample 
sizes for the chi-square and Fisher Exact tests.

 You can run all the tests in this chapter either from case-level data in a data-
base (one record per subject) or from data that has already been summarized 
in the form of a cross-tab:

 ✓ Most statistical software is set up to work with case-level data. Your file 
needs to have two categorical variables representing the row and column 
variables whose relationship you want to test. If you’re running a Mantel-
Haenszel test, your file also needs to have another variable representing 
the stratum (see the Mantel-Haenszel section later in this chapter). You 
merely have to tell the software which test (or tests) you want to run and 
identify the variables to be used for the test. Flip to Chapter 4 for an intro-
duction to statistical software.

 ✓ Most online calculators expect you to have already cross-tabulated 
the data. These calculators usually present a screen showing an empty 
table, and you enter the counts into the table’s cells.

Examining Two Variables with  
the Pearson Chi-Square Test

The most commonly used statistical test of association between two categori-
cal variables is called the chi-square test of association. This classic test was 
developed around 1900 by Karl Pearson and has been a mainstay of practi-
cal statistical analysis ever since. It’s called the chi-square test because it 
involves calculating a number (a test statistic) that fluctuates in accordance 
with the chi-square distribution (see Chapter 25). Many other statistical 
tests also use the chi-square distribution, but the test of association is by 
far the most popular, so whenever I refer to a chi-square test without speci-
fying which one, I’m referring to the Pearson chi-square test of association 
between two categorical variables.

In the following sections, I explain how the chi-square test works, list some pros 
and cons of the test, and describe a modification you can make to the test.
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Understanding how the  
chi-square test works
You don’t have to know the details of the chi-square test if you have a 
computer do the calculations for you (which I always recommend), so tech-
nically, you don’t have to read this section. But you’ll have a better apprecia-
tion for the strengths and limitations of this test if you know how it works. 
Here, I walk you through the steps of conducting a chi-square test.

Calculating observed and expected counts
 All statistical significance tests start with a null hypothesis (H0) that asserts 

that no real effect is present in the population, and any effect you think you 
see in your sample is due only to random fluctuations. (See Chapter 3 for more 
information.) The H0 for the chi-square test asserts that there’s no association 
between the row variable and the column variable, so you should expect the 
relative spread of cell counts across the columns to be the same for each row.

Figure 13-1 shows how this works out for the observed data taken from the 
example in this chapter’s introduction. You can see from the marginal “Total” 
row that the overall mortality rate (for both treatment groups combined) is 
57/100, or 57 percent.

 

Figure 13-1:  
The 

observed 
results of a 

trial of a new 
drug for a 

high-mortal-
ity disease.

 
 Illustration by Wiley, Composition Services Graphics

What if the true mortality rate for this condition is 57 percent, and the drug 
truly has no effect on mortality?

 ✓ In the drug-treated group, you’d expect about 34.2 deaths (57 percent of 
60), with the remaining 25.8 subjects surviving. (Expected outcomes are 
usually not whole numbers.)

 ✓ In the placebo group, you’d expect about 22.8 deaths (57 percent of 40), 
with the remaining 17.2 subjects surviving.

These expected outcomes are displayed in Figure 13-2.
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Figure 13-2: 
Expected 

cell counts 
if the null 

hypothesis 
is true (the 
drug does 
not affect 
survival).

  Illustration by Wiley, Composition Services Graphics

Notice that the expected counts table in Figure 13-2 has the same marginal totals 
(row totals and column totals) as the observed counts table in Figure 13-1; the 
difference is that under H0 (no association between row variable and column 
variable), the relative spread of expected counts across the columns is the same 
for each row (and the relative spread of counts down the rows is the same for 
each column). In other words, the “expected” numbers in both rows (drug and 
placebo) have the same relative spread between lived and died.

Now that you have observed and expected counts, you’re no doubt curious as to 
how they differ. You can subtract each expected count from the observed count 
in each cell to get a difference table (observed – expected), like Figure 13-3:

Because the observed and expected tables in Figures 13-1 and 13-2 always have 
the same marginal totals, the marginal totals in the difference table are all equal 
to zero. All four cells in the center of this difference table have the same absolute 
value (7.2), with a plus and a minus value in each row and each column.

 The pattern just described is always the case for 2x2 tables. For larger tables, 
the difference numbers aren’t all the same, but they always sum up to zero for 
each row and each column.

 

Figure 13-3: 
Differences 

between 
observed 

and 
expected 

cell counts 
if the null 

hypothesis 
is true.

  Illustration by Wiley, Composition Services Graphics
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The values in the difference table in Figure 13-3 show how far off from H0 your 
observed data is. The question remains: Are those difference values larger 
than what may have arisen from random fluctuations alone if H0 is really true? 
You need some kind of “yardstick” by which to judge how unlikely those differ-
ence values are. Recall from Chapter 9 that the standard error (SE) expresses 
the general magnitude of random sampling , so the SE makes a good yardstick 
for judging the size of the differences you may expect to see from random 
fluctuations alone. It turns out that the SE of the differences is approximately 
equal to the square root of the expected counts. The rigorous proof of this is 
too complicated for most mortals to understand, but a pretty simple informal 
explanation is based on the idea that random event occurrences often follow 
the Poisson distribution, for which the SE of the event count equals the square 
root of the expected count (as I explain in Chapter 9).

Summarizing and combining scaled differences
For the upper-left cell in the cross-tab (drug-treated subjects who lived), you 
see the following:

 ✓ The observed count (Ob) is 33.

 ✓ The expected count (Ex) is 25.8.

 ✓ The difference (Diff) is 33 – 25.8, or +7.2.

 ✓ The SE of the difference is , or 5.08.

You can “scale” the Ob–Ex difference by dividing it by the SE yardstick, get-
ting the ratio (Diff/SE) = +7.2/5.08, or 1.42. This means that the difference 
between the observed number of drug-treated subjects who lived and the 
number you would have expected if the drug had no effect on survival is 
about 1.42 times as large as you would have expected from random sampling 
fluctuations alone. You can do the same calculation for the other three cells 
and summarize these scaled differences, as shown in Figure 13-4.

 

Figure 13-4: 
Differences 

between 
observed 

and expected 
cell counts, 

scaled 
accord-

ing to the 
estimated 
standard 

errors of the 
differences.
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The next step is to combine these individual scaled differences into an 
overall measure of the difference between what you observed and what you 
would have expected if the drug truly did not affect survival. You can’t just 
add them up, because the negative and positive differences would tend to 
cancel each other out. You want all differences (positive and negative) to 
contribute to the overall measure of how far your observations are from what 
you expected under H0. Statisticians love to sum the squares of differences 
(because squares are always positive), and that’s exactly what’s done in the 
chi-square test. Figure 13-5 shows the squared scaled differences, which are 
calculated from the observed and expected counts in Tables 13-1 and 13-2 
using the formula (Ob – Ex)2/Ex, not by squaring the rounded-off numbers in 
Table 13-4, which would be less accurate.

 

Figure 13-5: 
Components 

of the chi-
square 

statistic: 
squares of 
the scaled 

differences.
  Illustration by Wiley, Composition Services Graphics

 You then add up these squared scaled differences: 2.01 + 1.52 + 3.01 + 2.27 = 8.81. 
This sum is an excellent test statistic to measure the overall departure of your 
data from the null hypothesis:

 ✓ If the null hypothesis is true (the drug does not affect survival), this sta-
tistic should be quite small.

 ✓ The more effect the drug has on survival (in either direction), the larger 
this statistic should be.

Determining the p value
The only remaining task is to determine the p value — the probability that 
random fluctuations alone, in the absence of any true effect of the drug on 
survival, could lead to a value of 8.81 or greater for this test statistic. (I intro-
duce p values in Chapter 3.) Once again, the rigorous proof is very compli-
cated, but an informal explanation goes something like this:

When the expected cell counts are very large, the Poisson distribution 
becomes very close to a normal distribution (see Chapter 25 for more on 
the Poisson distribution). If the H0 is true, each scaled difference should be 
(approximately) a normally distributed random variable with a mean of zero 
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(because you subtract the expected value from the observed value) and a 
standard deviation of 1 (because you divide by the standard error). The sum 
of the squares of one or more normally distributed random numbers is a 
number that follows the chi-square distribution (also covered in Chapter 25). 
So the test statistic from this test should follow the chi-square distribution 
(which is why this is called the chi-square test), and you should be able to 
look up your 8.81 in a chi-square table to get the p value for the test.

Now, the chi-square distribution is really a family of distributions, depend-
ing on a number called the degrees of freedom, usually abbreviated d.f. or df, 
or by the Greek lowercase letter nu (ν), which tells how many independent 
 normally distributed numbers were squared and added up.

What’s the df for the chi-square test? It depends on the number of rows in the 
cross-tab. For the 2x2 cross-tab (fourfold table) in this example, you added up 
the four values in Figure 13-5, so you may think that you should look up the 8.81 
chi-square value with 4 df. But you’d be wrong. Note the italicized word indepen-
dent in the preceding paragraph. And keep in mind that the differences (Ob – Ex) 
in any row or column always add up to zero. The four terms making up the 8.81 
total aren’t independent of each other. It turns out that the chi-square test sta-
tistic for a fourfold table has only 1 df, not 4. In general, an N-by-M table, with N 
rows, M columns, and therefore N × M cells, has only (N – 1)(M – 1) df because of 
the constraints on the row and column sums. Don’t feel bad if this wrinkle caught 
you by surprise — even Karl Pearson (the guy who invented the chi-square test) 
got that part wrong!

So, referring to a chi-square table (or, better yet, having the computer cal-
culate the p value for you in any statistical software package), the p value 
for chi-square = 8.81, with 1 df, is 0.003. This means that there’s only a 0.003 
probability, or about 1 chance in 333 (because 1/0.003 = 333), that random 
fluctuations could produce such an impressive apparent performance if the 
drug truly had no effect on survival. So your conclusion would be that the 
drug is associated with a significant reduction in mortality.

Putting it all together with some notation and formulas
 The calculations of the Pearson chi-square test can be summarized concisely 

using the cell-naming conventions in Figure 13-6, along with the standard sum-
mation notation described in Chapter 2.

 

Figure 13-6: 
A general 

way of nam-
ing the cells 

of a cross-
tab table.

 
 Illustration by Wiley, Composition Services Graphics
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Using these conventions, the basic formulas for the Pearson chi-square test 
are as follows:

 ✓ Expected values: , i = 1, 2, … N; j = 1, 2, … M

 ✓ Chi-square statistic: 

 ✓ Degrees of freedom: df = (N – 1)(M – 1)

where i and j are array indices that indicate the row and column, respec-
tively, of each cell.

Pointing out the pros and cons  
of the chi-square test
The Pearson chi-square test is so popular for several reasons:

 ✓ The calculations are fairly simple and can even be carried out by hand, 
although I’d never recommend that. They can easily be programmed in 
Excel; several web pages can perform the test; and it has been imple-
mented on PDAs, smartphones, and tablets. Almost every statistical 
software package (including the ones in Chapter 4) can perform the 
 chi-square test for cross-tabulated data.

 ✓ The test works for tables with any number of rows and columns, and it 
easily handles cell counts of any magnitude. The calculations are almost 
instantaneous on a computer for tables of any size and counts of any 
magnitude.

 But the chi-square test has some shortcomings:

 ✓ It’s not an exact test. The p value it produces is only approximate, so 
using p < 0.05 as your criterion for significance doesn’t necessarily guar-
antee that your Type I error rate (the chance of falsely claiming signifi-
cance) will be only 5 percent (see Chapter 3 for an introduction to Type 
I errors). It’s quite accurate when all the cells in the table have large 
counts, but it becomes unreliable when one or more cell counts is very 
small (or zero). There are different suggestions as to how many counts 
you need in order to confidently use the chi-square test, but the sim-
plest rule is that you should have at least five observations in each cell 
of your table (or better yet, at least five expected counts in each cell).

 ✓ The chi-square test isn’t good at detecting small but steady progres-
sive trends across the successive categories of an ordinal variable (see 
Chapter 4 if you’re not sure what ordinal is). It may give a significant 
result if the trend is strong enough, but it’s not designed specifically to 
work with ordinal categorical data.
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Modifying the chi-square test:  
The Yates continuity correction
For the special case of fourfold tables, a simple modification to the chi-square 
test, called the Yates continuity correction, gives more reliable p values. The  
correction consists of subtracting 0.5 from the magnitude of the (Ob – Ex)  
difference before squaring it.

 The Yates correction to the Pearson chi-square test should always be used for 
fourfold tables but should not be used for tables with more than two rows or 
more than two columns.

For the sample data in the earlier section “Understanding how the chi-square 
test works,” the application of the Yates correction changes the 7.20 (or 
–7.20) difference in each cell to 6.70 (or –6.70). This lowers the chi-square 
value from 8.81 down to 7.63 and increases the p value from 0.0030 to 0.0057, 
which is still very significant — the chance of random fluctuations produc-
ing such an apparent effect in your sample is only about 1 in 175 (because 
1/0.0057 = 175).

Focusing on the Fisher Exact Test
The Pearson chi-square test that I describe in the earlier section “Examining 
Two Variables with the Pearson chi-Square Test” isn’t the only way to  
analyze cross-tabulated data. R. A. Fisher (probably the most famous  
statistician of all time) invented another test in the 1920s that gives the  
exact p value for tables with large or small cell counts (even cell counts  
of zero!). Not surprisingly, this test is called the Fisher Exact test. In the  
following sections, I show you how the Fisher Exact test works, and I note 
both its pros and cons.

Understanding how the  
Fisher Exact test works
You don’t have to know the details of the Fisher Exact test if you have a 
computer do the calculations for you (which I always recommend), so you 
don’t have to read this section. But you’ll have a better appreciation for the 
strengths and limitations of this test if you know how it works.
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 This test is, conceptually, pretty simple. You look at every possible table that 
has the same marginal totals as your observed table. You calculate the exact 
probability (Pr) of getting each individual table using a formula that, for a four-
fold table (using the notation for Figure 13-6), is

Those exclamation points indicate calculating the factorials of the cell counts 
(see Chapter 2). For the example in Figure 13-1, the observed table has a 
probability of

Other possible tables with the same marginal totals as the observed table 
have their own Pr values, which may be larger than, smaller than, or equal to 
the Pr value of the observed table. The Pr values for all possible tables with a 
specified set of marginal totals always add up to exactly 1.

The Fisher Exact test p value is obtained by adding up the Pr values for all 
tables that are at least as different from the H0 as your observed table. For a 
fourfold table, that means adding up all the Pr values that are less than (or 
equal to) the Pr value for your observed table.

For the example in Figure 13-1, the p value comes out to 0.00385, which means 
that there’s only 1 chance in 260 (because 1/0.00385 = 260) that random fluc-
tuations could have produced such an apparent effect in your sample.

Noting the pros and cons  
of the Fisher Exact test
The big advantages of the Fisher Exact test are as follows:

 ✓ It gives the exact p value.

 ✓ It is exact for all tables, with large or small (or even zero) cell counts.

 So why do people still use the chi-square test, which is approximate and 
doesn’t work for tables with small cell counts? Why doesn’t everyone always 
use the Fisher test? Nowadays many statisticians are recommending that 
everyone use the Fisher test instead of the chi-square test whenever possible. 
But there are several problems with the Fisher Exact test:
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 ✓ The calculations are a lot more complicated, especially for tables larger 
than 2x2. Many statistical software packages either don’t offer the 
Fisher Exact test or offer it only for fourfold tables. Several interactive 
web pages perform the Fisher Exact test for fourfold tables (including 
StatPages.info/ctab2x2.html), but at this time I’m not aware of 
any web pages that offer that test for larger tables. Only the major sta-
tistical software packages (like SAS, SPSS, and R, described in Chapter 4) 
offer the Fisher Exact test for tables larger than 2x2.

 ✓ The calculations can become numerically unstable for large cell counts, 
even in a 2x2 table. The equations involve the factorials of the cell 
counts and marginal totals, and these can get very large — even for 
modest sample sizes — often exceeding the largest number that a com-
puter is capable of dealing with. Many programs and web pages that 
offer the Fisher Exact test for fourfold tables fail with data from more 
than 100 subjects. (The web page StatPages.info/ctab2x2.html 
works with cell counts of any size.)

 ✓ The exact calculations can become impossibly time consuming for larger 
tables and larger cell counts. Even if a program can, in theory, do the cal-
culations, it may take hours — or even centuries — to carry them out!

 ✓ The Fisher Exact test is no better than the chi-square test at detecting 
gradual trends across ordinal categories.

Calculating Power and Sample Size for 
Chi-Square and Fisher Exact Tests

Note: The basic ideas of power and sample-size calculations are described in 
Chapter 3, and you should review that information before going further here.

Suppose you’re planning a study to test whether giving a certain dietary supple-
ment to a pregnant woman reduces her chances of developing morning sickness 
during the first trimester (the first three months) of pregnancy. This condition 
normally occurs in 80 percent of pregnant women, and if the supplement can 
reduce that incidence rate to only 60 percent, it’s certainly worth knowing about. 
So you plan to enroll a group of pregnant women and randomize them to receive 
either the dietary supplement or a placebo that looks, smells, and tastes exactly 
like the supplement. You’ll have them take the product during their first trimes-
ter, and you’ll record whether they experience morning sickness during that 
time (using explicit criteria for what constitutes morning sickness). Then you’ll 
tabulate the results in a 2x2 cross-tab (with “supplement” and “placebo” defining 
the two rows, and “did” and “did not” experience morning sickness heading the 
two columns). And you’ll test for a significant effect with a chi-square or Fisher 
Exact test. How many subjects must you enroll to have at least an 80 percent 
chance of getting p < 0.05 on the test if the supplement truly can reduce the inci-
dence from 80 percent to 60 percent?

http://statpages.info/ctab2x2.html
http://statpages.info/ctab2x2.html
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 You have several ways to estimate the required sample size. The quickest one 
is to refer to the sample-size table for comparison of proportions in this book’s 
Cheat Sheet at www.dummies.com/cheatsheet/biostatistics. But the 
most general and most accurate way is to use power/sample-size software 
such as PS or GPower (see Chapter 4). Or, you can use the online sample-size 
calculator at StatPages.info/proppowr.html, which produces the same 
results. Using that web page, the calculation is set up as shown in Figure 13-7.

 

Figure 13-7: 
The online 

sample-size 
calculator 

for compar-
ing two 

proportions 
with a chi-
square or 

Fisher Exact 
test.

 
 Screenshot courtesy of John C. Pezzullo, PhD

You fill in the five parameters in the upper block, hit the Compute button, 
and see the results in the lower block. This web page provides two different 
calculations:

 ✓ The classical calculation, which applies to the uncorrected chi-square 
test, says that 81 analyzable subjects in each group (162 analyzable sub-
jects altogether) are required.

 ✓ The continuity-corrected calculation, which applies to the Yates chi-
square or Fisher Exact test, says that 91 analyzable subjects in each 
group (182 analyzable subjects altogether) are required.

You should base your planning on the larger value from the continuity- 
corrected calculation, just to be on the safe side.

http://www.dummies.com/cheatsheet/biostatistics
http://statpages.info/proppowr.html
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 You need to enroll additional subjects to allow for possible attrition during the 
study. If you expect x percent of the subjects to drop out, your enrollment 
should be:

Enrollment = 100 × Analyzable Number/(100 – x)

So if you expect 15 percent of enrolled subjects to drop out and therefore be 
non-analyzable, you need to enroll 100 × 182/(100 – 15), or about 214, subjects.

Analyzing Ordinal Categorical  
Data with the Kendall Test

 Neither the chi-square nor the Fisher Exact test (I describe both earlier in this 
chapter) is designed for testing the association between two ordinal categori-
cal variables — categories that can be put into a natural order. These tests are 
insensitive to the order of the categories; if you shuffle the columns (or rows) 
into some other sequence, they produce the same p value. This characteris-
tic makes the chi-square and Fisher Exact tests insensitive to gradual trends 
across the ordinal categories.

As an example, consider a study in which you test a new drug for a chronic 
progressive disease (one that tends to get worse over time) at two differ-
ent doses along with a placebo. You record the outcome after six months of 
treatment as a three-way classification: improved, unchanged, or worsened. 
You can think of treatment as an ordinal categorical variable — placebo < 
low-dose < high-dose — and outcome as an ordinal variable — worsened < 
unchanged < improved. A study involving 100 test subjects may produce the 
results shown in Figure 13-8.

 

Figure 13-8:  
An associa-

tion between 
two ordinal 

variables: 
dose 

level and 
response.

 
 Illustration by Wiley, Composition Services Graphics
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Notice that

 ✓ Most placebo subjects got worse, some stayed the same, and a few got 
better. This reflects the general downward course of an untreated pro-
gressive disease.

 ✓ The low-dose subjects didn’t seem to change much, on average, with 
roughly equal numbers getting better, getting worse, and remaining the 
same. The low-dose drug may at least be showing some tendency to 
counteract the general progressive nature of the disease.

 ✓ The high-dose subjects seemed to be getting better more often than get-
ting worse, indicating that at higher doses, the drug may be able to actu-
ally reverse the usual downward course of the disease.

So an encouraging pattern does appear in the data. But both the chi-square 
and Fisher Exact tests conclude that there’s no significant association 
between dose level of the drug and outcome (p = 0.153 by chi-square test and 
0.158 by Fisher Exact test). Why can’t the tests see what you can see by look-
ing at the table? Because both of these tests, by the way they calculate their 
p value, are unable to notice a progressive trend across the three rows and 
the three columns.

Fortunately, other tests are designed specifically to spot trends in ordinal 
data. One of the most common ones involves calculating a test statistic called 
Kendall’s tau. The basic idea is to consider each possible pair of subjects, 
determining whether those two subjects are concordant or discordant with the 
hypothesis that the two variables are positively correlated. In this example, 
it’s like asking whether the subject who received a higher dose of the drug 
also had a better outcome.

For example, if one subject in the pair received the placebo and was 
unchanged while the other subject received the low dose and got better, that 
pair would be concordant. But if one subject received a low dose and got 
better while another subject received a high dose and remained unchanged, 
that pair would be considered discordant.

The Kendall test counts how many pairs are concordant, discordant, or non-
informative (where both subjects are in the same category for one or both 
variables). The test statistic is based on the difference between the number 
of concordant and discordant pairs divided by a theoretical estimate of the 
standard error of that difference. The test statistic is then looked up in a 
table of the normal distribution to obtain a p value.
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For the sample data in Figure 13-8, the Kendall test (using the R statistical 
software package) gives p = 0.010, which, being less than 0.05, indicates a 
significant association between dose level and outcome. The Kendall test can 
spot the slight but consistent trend across the columns and down the rows of 
the table, whereas the chi-square and Fisher Exact tests can’t.

Studying Stratified Data with the 
Mantel-Haenszel Chi-Square Test

All the tests I describe earlier in this chapter examine the relationship between 
two categorical variables. Sometimes, however, one or more “nuisance” variables 
can get in the way of your analysis. Building on the example I use at the begin-
ning of this chapter, suppose you’ve tested your new drug in three countries. 
And suppose that because of differences in demographics, healthcare, climate, 
and so on, the mortality of the disease tends to be different in each of the three 
countries. Furthermore, suppose that there’s a slight imbalance between the 
number of drug and placebo subjects in each country. The country would be 
considered a confounder of the relationship between treatment and survival. 
Confounding can obscure real effects or produce spurious apparent effects when 
none are truly present. So you want some way to control for this confounder 
(that is, mathematically compensate for any effect it might have on the observed 
mortality) in your analysis.

The most general way to handle confounding variables is with multivariate 
regression techniques that I describe in Chapter 19. Another way is by stratifi-
cation, in which you split your data file into two or more strata on the basis of 
the values of the confounder so that cases within each stratum have the same 
(or nearly the same) value for the confounder (or confounders). You then ana-
lyze the data within each stratum and pool the results for all the strata.

When you analyze the relationship between two dichotomous categorical 
variables, you can control for one or more confounders using the Mantel-
Haenszel (MH) chi-square test. This test is simple to set up, and the results 
are usually easy to interpret, so it’s often the preferred way to analyze fourfold 
tables when you want to adjust for confounding variables.

To run an MH test, you first create a separate fourfold table for each stratum. 
Suppose that your data, broken down by country, looks like Figure 13-9.
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Figure 13-9: 
Results of 
a trial of a 
new drug 

for a high-
mortality 
disease, 

stratified by 
country.

 
 Illustration by Wiley, Composition Services Graphics

Conceptually, the MH test works by estimating an odds ratio for each coun-
try, pooling those estimates into an overall odds ratio for all countries, and 
testing whether the pooled odds ratio is significantly different from 1. (An 
odds ratio is a measure of how much the spread of counts across the columns 
differs between the rows, with a value of 1 indicating no difference at all; see 
Chapter 14 for details.)

Using the R statistical package, an MH test on the data in Figure 13-9 produces 
a p value of 0.0068, which indicates that there’s only about 1 chance in 147 
(because 1/0.0068 = 147) that random fluctuations could produce such an 
apparent effect in your sample.

Like the chi-square test, the Mantel-Haenszel test is only an approximation. 
It’s most commonly used for 2x2 tables, although some software can run an 
extended form of the test for tables larger than 2x2, provided the categorical 
variables are ordinal (see the section “Analyzing Ordinal Categorical Data 
with the Kendall Test”).



Chapter 14

Taking a Closer Look  
at Fourfold Tables

In This Chapter
▶ Beginning with the basics of fourfold tables
▶ Digging into sampling designs for fourfold tables
▶ Using fourfold tables in different scenarios

I 
n Chapter 13, I show you how to compare proportions between two or more 
groups with a cross-tab table. In general, a cross-tab shows the relationship 

between two categorical variables. Each row of the table represents one particu-
lar category of one variable, and each column of the table represents one par-
ticular category of the other variable. The table can have two or more rows and 
two or more columns, depending on the number of levels (different categories) 
present in each of the two variables. So a cross-tab between a treatment variable 
that has three levels (like old drug, new drug, and placebo) and an outcome vari-
able that has five levels (like died, got worse, unchanged, improved, and cured) 
has three rows and five columns.

A special case occurs when both variables are dichotomous (or binary); that 
is, they both have only two values, like gender (male and female) and com-
pliance (good and bad). The cross-tab of these two variables has two rows 
and two columns. Because a 2x2 cross-tab table has four cells, it’s commonly 
called a fourfold table.

Everything in Chapter 13 applies to the fourfold table and to larger cross-tab 
tables. Because the fourfold table springs up in so many different contexts in 
biological research, and because so many other quantities are calculated from 
the fourfold table, it warrants a chapter all its own. In this chapter, I describe 
the various research scenarios in which fourfold tables often occur: compar-
ing proportions, testing for association, evaluating risk factors, quantifying the 
performance of diagnostic tests, assessing the effectiveness of therapies, and 
measuring inter-rater and intra-rater reliability. I describe how to calculate sev-
eral common measures (called indices) used in each scenario, along with their 
confidence intervals. And I describe different kinds of sampling strategies (ways 
of selecting subjects to study) that you need to be aware of.
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Focusing on the Fundamentals  
of Fourfold Tables

The most obvious thing you can get from a fourfold table is a p value indicating 
whether a significant association exists between the two categorical variables 
from which the table was created. A p value is the probability that random fluc-
tuations alone, in the absence of any real effect in the population, could have 
produced an observed effect at least as large as what you observed in your 
sample. If the p value is less than some arbitrary value (often set at 0.05), the 
effect is said to be statistically significant (see Chapter 3 for a more detailed dis-
cussion of p values and significance). Assessing significance is often the main 
reason (and sometimes the only reason) why someone creates a cross-tab of any 
size. But fourfold tables can yield other interesting numbers besides a p value.

 In the rest of this chapter, I describe some of the many useful numbers that 
you can derive from the cell counts in a fourfold table. The statistical software 
that cross-tabulates your raw data often provides some of these indices (you 
may have to tell the software which ones you want; see Chapter 4 for software 
basics). The formulas for many of these indices are simple enough to do on a cal-
culator after you get the four cell counts, but you can also use a web page (which 
I refer to throughout this chapter as the fourfold table web page) to calculate sev-
eral dozen kinds of indices from a fourfold table, so you shouldn’t have to do any 
calculations by hand: StatPages.info/ctab2x2.html.

Like any other number you calculate from your data, an index from a fourfold 
table is only a sample statistic — an estimate of the corresponding popula-
tion parameter. So a good researcher always wants to quote the precision of 
that estimate. In Chapters 9 and 10, I describe how to calculate the standard 
error (SE) and confidence interval (CI) for simple sample statistics like means, 
proportions, and regression coefficients. And in this chapter, I show you how 
to calculate the SE and CI for the various indices you can get from a fourfold 
table.

Though an index itself may be easy to calculate, its SE or CI usually is not. 
Approximate formulas are available for some of the more common indices; 
these are usually based on the fact that the random sampling fluctuations 
of an index (or its logarithm) are often nearly normally distributed if the 
sample size isn’t too small. I provide such formulas where they’re available. 
Fortunately, the fourfold table web page provides confidence intervals for all 
the indices it calculates, using a general (but still approximate) method.

 For consistency, all the formulas in this chapter refer to the four cell counts 
of the fourfold table, and the row totals, column totals, and grand total, in the 
same standard way, shown in Figure 14-1. This convention is used on the web 
page and in many other statistics books.

http://statpages.info/ctab2x2.html


191 Chapter 14: Taking a Closer Look at Fourfold Tables

 

Figure 14-1: 
These des-

ignations for 
cell counts 
and totals 
are used 

throughout 
this chapter.

  Illustration by Wiley, Composition Services Graphics

Choosing the Right Sampling Strategy
When designing a study whose objective involves two categorical variables 
that will be cross-tabulated into a fourfold table, you have to give thought 
to how you select your subjects. For example, suppose you’re planning a 
simple research project to investigate the relationship between obesity and 
high blood pressure (hypertension, or HTN). You enroll a sample of subjects 
and prepare a fourfold table from your data, with obesity as the row variable 
(obese in the top row; non-obese in the bottom row) and HTN as the column 
variable (subjects with HTN in the left column; subjects without HTN in the 
right column). For the sake of the example, if an association exists, obesity is 
considered the cause and HTN the effect. How will you go about enrolling sub-
jects for this study?

 You have several ways to acquire subjects for a study of cause-and-effect rela-
tionships (like obesity and HTN), where the data will be cross-tabulated into a 
fourfold table:

 ✓ You can enroll a certain number of subjects without knowing how 
many do or do not have the risk factor, or how many do or do not 
have the outcome. You can decide to enroll, say, 100 subjects, not 
knowing in advance how many of these subjects are obese or how many 
have HTN. In terms of the cells in Figure 14-1, this means that you pre-
determine the value of t as 100, but you don’t know what the values of 
r1, r2, c1, or c2 will be until you determine the obesity and hypertension 
status of each subject. This is called a natural sampling design.

 ✓ You can enroll a certain number of subjects with the risk factor, and 
a certain number without the risk factor. You can decide to enroll, 
say, 50 obese and 50 non-obese subjects, not knowing what their HTN 
status is. You specify, in advance, that r1 will be 50 and r2 will be 50 
(and therefore t will be 100), but you don’t know what c1 and c2 are until 
you determine the HTN status of each subject. This is called a cohort or 
prospective study design — you select two cohorts of subjects based 
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on the presence or absence of the risk factor (the cause) and then com-
pare how many subjects in each cohort got the outcome (conceptually 
looking forward from cause to effect). Statisticians often use this kind 
of design when the risk factor is very rare, to be sure of getting enough 
subjects with the rare risk factor.

 ✓ You can enroll a certain number of subjects who have the outcome 
and a certain number who do not have the outcome. You can decide 
to enroll, say, 50 subjects with hypertension and 50 subjects without 
hypertension, without knowing what their obesity status is. You specify, 
in advance, that c1 will be 50 and c2 will be 50 (and therefore t will be 
100), but you don’t know what r1 and r2 are until you determine the obe-
sity status of each subject. This is called a case-control or retrospective 
study design — you select a bunch of cases (subjects with the outcome 
of hypertension) and a bunch of controls (subjects without hypertension) 
and then compare the prevalence of the obesity risk factor between the 
cases and the controls (conceptually looking backward from effect to 
cause). Statisticians often use this kind of design when the outcome is 
very rare, to be sure of getting enough subjects with the rare outcome.

Why is this distinction among ways of acquiring subjects important? As you 
see in the rest of this chapter, some indices are meaningful only if the sam-
pling is done a certain way.

Producing Fourfold Tables  
in a Variety of Situations

Fourfold tables can arise from a number of different scenarios, including the 
following:

 ✓ Comparing proportions between two groups (see Chapter 13)

 ✓ Testing whether two binary variables are associated

 ✓ Assessing risk factors

 ✓ Evaluating diagnostic procedures

 ✓ Evaluating therapies

 ✓ Evaluating inter-rater reliability

Note: These scenarios can also give rise to tables larger than 2x2. And four-
fold tables can arise in other scenarios besides these.
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Describing the association between  
two binary variables
Suppose you select a random sample of 60 adults from the local population. 
Suppose you measure their height and weight, calculate their body mass 
index, and classify them as obese or non-obese. You can also measure their 
blood pressure under various conditions and categorize them as hyperten-
sive or non-hypertensive. This is a natural sampling strategy, as described in 
the earlier section “Choosing the Right Sampling Strategy.” You can summa-
rize your data in a fourfold table (see Figure 14-2).

This table indicates that most obese people have hypertension, and most 
non-obese people don’t have hypertension. You can show that this apparent 
association is statistically significant in this sample using either a Yates chi-
square or a Fisher Exact test on this table (as I describe in Chapter 13), get-
ting p = 0.016 or p = 0.013, respectively.

But when you present the results of this study, just saying that a significant asso-
ciation exists between obesity and hypertension isn’t enough; you should also 
indicate how strong this relationship is. For two continuous variables (such as 
weight or blood pressure, that are not restricted to whole numbers, but could, in 
theory at least, be measured to any number of decimal places), you can present 
the correlation coefficient — a number that varies from 0 (indicating no correla-
tion at all) to plus or minus 1 (indicating perfect positive or perfect negative cor-
relation). Wouldn’t it be nice if there was a correlation coefficient designed for 
two binary categorical variables that worked the same way?

The tetrachoric correlation coefficient (RTet), also called the terachoric correla-
tion coefficient, is based on the concept that a subject’s category (like hyper-
tensive or non-hypertensive) could have been derived from some continuous 
variable (like systolic blood pressure), based on an arbitrary “cut value” (like 
150 mmHg). This concept doesn’t make much sense for intrinsically dichoto-
mous variables like gender, but it’s reasonable for things like hypertension 
based on blood pressure or obesity based on body mass index.

 

Figure 14-2: 
A fourfold 
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 The RTet calculated from two binary variables is an estimate of the ordinary 
correlation coefficient between the two original continuous variables. Recall 
that a correlation coefficient can be positive or negative, and can range from 0 
(signifying no correlation at all) to 1 (signifying perfect correlation). You can 
calculate the RTet from all three kinds of sampling strategies described in the 
earlier “Choosing the Right Sampling Strategy” section: natural, cohort, and 
case-control. The exact formula is extremely complicated, but an approximate 
value can be calculated as

where cos is the cosine of an angle in radians.

For the data in Figure 14-2, , which is 
about 0.53.

Note: No simple formulas exist for the standard error or confidence intervals 
for the tetrachoric correlation coefficient, but the fourfold-table web page (at 
StatPages.info/ctab2x2.html) can calculate them. For this example, 
the 95 percent CI is 0.09 to 0.81.

Assessing risk factors
How much does a suspected risk factor (cause) increase the chances of get-
ting a particular outcome (effect)? For example, how much does being obese 
increase your chances of having hypertension? You can calculate a couple of 
indices from the fourfold table that describe this increase, as you discover in 
the following sections.

Relative risk (risk ratio)
The risk (or probability) of getting a bad outcome is estimated as the fraction 
of subjects in a group who had the outcome. You can calculate the risk sepa-
rately for subjects with and without the risk factor. The risk for subjects with 
the risk factor is a/r1; for the example from Figure 14-2, it’s 14/21, which is 
0.667 (66.7 percent). And for those without the risk factor, the risk is c/r2; for 
this example, it’s 12/39, which is 0.308 (30.8 percent).

 The relative risk (RR), also called the risk ratio, is the risk of getting the out-
come if you have the risk factor divided by the risk of getting the outcome if 
you don’t have the risk factor. You calculate it as: RR = (a/r1)/(c/r2).

For this example, the RR is (14/21)/(12/39), which is 0.667/0.308, which is 
2.17. So in this sample, obese subjects are slightly more than twice as likely 
to have hypertension than non-obese subjects.

http://statpages.info/ctab2x2.html
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 You can calculate RRs only from natural samples and cohort samples 
(described earlier in this chapter); you can’t calculate them from case-control 
samples. This is because the risks are estimated from the number of people 
with and without the outcome, and in a case-control study, you arbitrarily dic-
tate how many subjects with and without the risk factor you study. So the 
risks (and therefore the RR) calculated from a case-control study doesn’t 
reflect the true RR in the whole population.

You can calculate an approximate 95 percent confidence interval around the 
observed RR using the following formulas, which are based on the assump-
tion that the logarithm of the RR is normally distributed:

 1. Calculate the standard error of the log of RR using the following formula:

  

 2. Calculate Q with the following formula: Q = e1.96 × SE where Q is simply 
a convenient intermediate quantity, which will be used in the next 
part of the calculation, and e is the mathematical constant 2.718.

 3. Find the lower and upper limits of the confidence interval with the 
 following formula:

  

For other confidence levels, replace the 1.96 in Step 2 with the appropriate 
multiplier shown in Table 10-1 of Chapter 10. So for 50 percent CIs, use 0.67; 
for 80 percent, use 1.28; for 90 percent, use 1.64; for 98 percent, use 2.33; and 
for 99 percent, use 2.58.

So for the example in Figure 14-2, you calculate 95 percent CI around the 
observed relative risk as follows:

 1. , which is 0.2855.

 2. Q = e1.96 × 0.2855, which is 1.75.

 3. The , which is 1.24 to 3.80.

Or, you can enter the four cell counts from Figure 14-2 into the fourfold table 
web page, and it will calculate the RR as 2.17, with 95 percent confidence 
limits of 1.14 to 3.71 (using a different formula).

Odds ratio
The odds of something happening is the probability of it happening divided 
by the probability of it not happening: p/(1 – p). In a sample of data, you esti-
mate the odds of having an outcome event as the number of subjects who 
had the event divided by the number of subjects who didn’t have it.
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The odds of having the outcome event for subjects with the risk factor are 
a/b; for the example in Figure 14-2, they’re 14/7, which is 2.00. And for those 
without the risk factor, the odds are c/d; for this example they’re 12/27, 
which is 0.444 (odds usually aren’t expressed as percentages). See Chapter 3 
for a more detailed discussion of odds.

 The odds ratio (OR) is the odds of getting the outcome if you have the risk 
factor divided by the odds of getting the outcome if you don’t have the risk 
factor. You calculate it as: OR = (a/b)/(c/d).

For this example, the odds ratio is (14/7)/(12/27), which is 2.00/0.444, which 
is 4.50. So in this sample, obese subjects have 4.5 times the odds of having 
hypertension than non-obese subjects.

 You can calculate odds ratios from all three kinds of sampling strategies: natu-
ral, cohort, and case-control. (See the earlier “Choosing the Right Sampling 
Strategy” section for more about these strategies.)

You can calculate an approximate 95 percent confidence interval around the 
observed odds ratio using the following formulas, which are based on the 
assumption that the logarithm of the OR is normally distributed:

 1. Calculate the standard error of the log of the OR with the following 
formula:

  

 2. Calculate Q with the following formula: Q = e1.96 × SE, where Q is simply 
a convenient intermediate quantity, which will be used in the next 
part of the calculation, and e is the mathematical constant 2.718.

 3. Find the limits of the confidence interval with the following formula:

  

For other confidence levels, replace the 1.96 in Step 2 with the appropriate 
multiplier shown in Table 10-1 of Chapter 10. So for 50 percent CIs, use 0.67; 
for 80 percent, use 1.28; for 90 percent, use 1.64; for 98 percent, use 2.33;  
and for 99 percent, use 2.58.

So for the example in Figure 14-2, you calculate 95 percent CI around the 
observed odds ratio as follows:

 1. , which is 0.5785.

 2. , which is 3.11.

 3. , which is 1.45 to 14.0.
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Or, you can enter the four cell counts from Figure 14-2 into the fourfold table 
web page, and it will calculate the OR as 4.5, with 95 percent confidence 
limits of 1.27 to 16.5 (using a different formula).

Evaluating diagnostic procedures
Many diagnostic procedures give a positive or negative test result, which, 
ideally, should correspond to the true presence or absence of the medi-
cal condition being tested for (as determined by some gold standard that’s 
assumed to be perfectly accurate in diagnosing the condition). But gold 
standard diagnostic procedures can be time-consuming, expensive, and 
unpleasant for the patient, so quick, inexpensive, and relatively noninvasive 
screening tests are very valuable if they’re reasonably accurate.

Most tests produce some false positive results (coming out positive when the 
condition is truly not present) and some false negative results (coming out 
negative when the condition truly is present). It’s important to know how 
well a test performs.

You usually evaluate a proposed screening test for a medical condition by 
administering the proposed test to a group of subjects, whose true status 
has been (or will be) determined by the gold standard method. You can then 
cross-tabulate the test results against the true condition, producing a four-
fold table like Figure 14-3.
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is summa-

rized when 
evaluating 

a proposed 
diagnostic 
screening 

test.
 

 Illustration by Wiley, Composition Services Graphics

For example, consider a home pregnancy test that’s administered to 100 ran-
domly chosen women who suspect they may be pregnant. This is a natural 
sampling from a population defined as “all women who think they might be 
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pregnant,” which is the population to whom a home pregnancy test would  
be marketed. Eventually, their true status becomes known, so it’s cross- 
tabulated against the test results, giving Figure 14-4.

 

Figure 14-4: 
Results from 

a test of a 
proposed 

home preg-
nancy test.

 
 Illustration by Wiley, Composition Services Graphics

You can easily calculate at least five important characteristics of the home 
test from this table, as you find out in the following sections.

 Accuracy, sensitivity, specificity, positive predictive value, and negative pre-
dictive value (see the next few sections) are simple proportions. I tell you how 
to calculate the SEs and CIs for these indices in Chapters 9 and 10.

Overall accuracy
Overall accuracy measures how often a test is right. A perfectly accurate test 
never produces false positive or false negative results. In Figure 14-4, cells 
a and d represent correct test results, so the overall accuracy of the home 
pregnancy test is (a + d)/t. Using the data in Figure 14-4, accuracy = (33 + 
51)/100, which is 0.84, or 84 percent.

 You can calculate overall accuracy only from a natural sample study design, 
and it applies only to the population from which that sample was selected.

Sensitivity and specificity
A perfectly sensitive test never produces a false negative result; if the condi-
tion is truly present, the test always comes out positive. (In other words, if it’s 
there, you’ll see it.) So when a perfectly sensitive test comes out negative, you 
can be sure the person doesn’t have the condition. You calculate sensitivity by 
dividing the number of true positive cases by the total number of cases where 
the condition was truly present: a/c1 (that is, true positive/all present). Using 
the data in Figure 14-4, sensitivity = 33/37, which is 0.89; that means that the 
home test comes out positive in 89 percent of truly pregnant women.

A perfectly specific test never produces a false positive result; if the condition 
is truly absent, the test always comes out negative. (In other words, if it’s not 
there, you won’t see it.) So when a perfectly specific test comes out positive, 
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you can be sure the person has the condition. You calculate specificity by divid-
ing the number of true negative cases by the total number of cases where the 
condition was truly absent: d/c2 (that is, true negative/all not present). Using 
the data in Figure 14-4, specificity = 51/63, which is 0.81; that means that the 
home test comes out negative in 81 percent of truly non-pregnant women.

Sensitivity and specificity are important characteristics of the test itself, but 
they don’t answer the very practical question of, “How likely is a particular 
test result (positive or negative) to be correct?” That’s because the answers 
depend on the prevalence of the condition in the population the test is 
applied to. (Positive predictive value and negative predictive value, explained 
in the following section, do answer that question, because their values do 
depend on the prevalence of the condition in the population.)

 You can calculate sensitivity and specificity from a study that uses natural sam-
pling or from a study where you predetermine the number of subjects who truly 
do and don’t have the condition. You can’t calculate sensitivity or specificity if 
you predetermine the number of subjects with positive and negative test results.

Positive predictive value and negative predictive value
The positive predictive value (PPV) is the fraction of all positive test results 
that are true positives (the woman is truly pregnant). If you see it, it’s there! 
You calculate PPV as a/r1. For the data in Figure 14-4, the PPV is 33/45, which 
is 0.73. So if the pregnancy test comes out positive, there’s a 73 percent 
chance that the woman is truly pregnant.

The negative predictive value (NPV) is the fraction of all negative test results 
that are true negatives (the woman is truly not pregnant). If you don’t see it, 
it’s not there! You calculate NPV as d/r2. For the data in Figure 14-4, the NPV 
is 51/55, which is 0.93. So if the pregnancy test comes out negative, there’s a 
93 percent chance that the woman is truly not pregnant.

 You can calculate PPV and NPV from a study that uses natural sampling or 
from a study where you predetermine the number of subjects with positive 
and negative test results. But you can’t calculate PPV or NPV if you predeter-
mine the number of subjects who truly do and don’t have the conditions; you 
must calculate them from groups having the same prevalence of the condition 
that you want the PPV and NPV values to be applicable to.

Investigating treatments
One of the simplest ways to investigate the effectiveness of some treatment 
(drug, surgical procedure, and so on) is to study a sample of subjects with 
the target condition (obesity, hypertension, diabetes, and so on) and ran-
domly assign some of them to receive the proposed treatment and some of 
them to receive a placebo or sham treatment. Then observe whether the 
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treatment helped the subject. Of course, placebos help many subjects, so 
you need to compare the fraction of successful outcomes between the two 
groups of subjects.

Suppose you study 200 subjects with arthritis, randomize them so that 100 
receive an experimental drug and 100 receive a placebo, and record whether 
each subject felt that the product helped their arthritis. You tabulate the 
results in a fourfold table, like Figure 14-5.

 

Figure 14-5: 
Comparing a 
treatment to 

a placebo.
 

 Illustration by Wiley, Composition Services Graphics

Seventy percent of subjects taking the new drug report that it helped their 
arthritis, which is quite impressive until you see that 50 percent of subjects 
who received the placebo also reported improvement. (Pain studies are notori-
ous for showing very strong placebo effects.) Nevertheless, a Yates chi-square 
or Fisher Exact test (see Chapter 13) shows that the drug helped a significantly 
greater fraction of the time than the placebo (p = 0.006 by either test).

But how do you quantify the amount of improvement? You can calculate a 
couple of useful effect-size indices from this fourfold table, as you find out in 
the following sections.

Difference in proportion
One very simple and obvious number is the between-group difference in the 
fraction of subjects helped: a/r1 – c/r2. For the numbers in Figure 14-5, the 
difference = 70/100 – 50/100, which is 0.7 – 0.5 = 0.2, or a 20 percent superior-
ity in the proportion of subjects helped by the drug relative to the placebo.

You can calculate (approximately) the standard error (SE) of the difference 
as: . For the data in Figure 14-5, 

, which is 0.0678, so you’d report 
the difference in proportion helped as 0.20 ± 0.0678.
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You obtain the 95 percent CI around the difference by adding and subtracting 
1.96 times the SE, which gives 0.2 – 1.96 × 0.0678, and 0.2 + 1.96 × 0.0678, for a 
95 percent CI of 0.067 to 0.333.

Number needed to treat
The number needed to treat (NNT) is an interesting number that physicians 
love. Basically, it answers the very practical question, “How many subjects 
would I have to treat with the new drug before helping, on average, one 
additional subject beyond those who would have been helped even by a pla-
cebo?” This number turns out to be simply the reciprocal of the difference in 
the proportions helped (ignoring the sign of the difference), which I describe 
in the preceding section: NNT = 1/|Diff|. So for the example in Figure 14-5, 
NNT = 1/0.2, or 5 subjects.

The SE of the NNT isn’t particularly useful because NNT has a very skewed 
sampling distribution. You can obtain the confidence limits around NNT by 
taking the reciprocals of the confidence limits for Diff (and swapping the 
lower and upper limits). So the 95 percent confidence limits for NNT are 
1/0.333 and 1/0.067, which is 3.0 to 15, approximately.

Looking at inter- and intra-rater reliability
Many measurements in biological and sociological research are obtained by 
the subjective judgment of humans. Examples include the reading of X-rays, 
CAT scans, ECG tracings, ultrasound images, biopsy specimens, and audio 
and video recordings of subject behavior in various situations. The human 
may make quantitative measurements (like the length of a bone on an ultra-
sound image) or categorical ratings (like the presence or absence of some 
atypical feature on an ECG tracing).

You need to know how consistent such ratings are among different raters read-
ing the same thing (inter-rater reliability) and how reproducible the ratings are 
for one rater reading the same thing multiple times (intra-rater reliability).

When considering a binary reading (like yes or no) between two raters, you 
can estimate inter-rater reliability by having each rater read the same batch 
of, say, 50 specimens, and then cross-tabbing the results, as in Figure 14-6.

Cell a contains a count of how many specimens were rated yes by Rater 1 and 
yes by Rater 2; cell b counts how many specimens were rated yes by Rater 1 
but no by Rater 2; and so on.
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Figure 14-6: 
Results of 
two raters 

reading the 
same set 

of 50 speci-
mens and 

rating each 
specimen 
yes or no.

  Illustration by Wiley, Composition Services Graphics

You can construct a similar table for estimating intra-rater reliability by 
having one rater read the same batch of specimens on two separate occa-
sions; in this case, you’d replace the word Rater with Reading in the row and 
column labels.

 Ideally, all the specimens would be counted in cells a or d of Figure 14-6; cells 
b and c would contain zeros. Cohen’s Kappa (signified by the Greek lowercase 
kappa: κ) is a measure of how close the data comes to this ideal. You calculate 
kappa as: κ = 2(ad – bc)/(r1 × c2 + r2 × c1).

For perfect agreement, κ = 1; for completely random ratings (indicating no 
rating ability whatsoever), κ = 0. Random sampling fluctuations can actually 
cause κ to be negative. Like the student taking a true/false test, where the 
number of wrong answers is subtracted from the number of right answers to 
compensate for guessing, getting a score less than zero indicates the interest-
ing combination of being stupid and unlucky!

 There’s no universal agreement as to what a “good” value of kappa is. One 
fairly common convention (but by no means the only one) is that values of κ 
less than 0.4 are poor, those between 0.4 and 0.75 are fair-to-good, and those 
more than 0.75 are excellent.

For the data in Figure 14-6: κ = 2(22 × 16 – 5 × 7)/(27 × 21 + 23 × 29), which is 
0.5138, indicating only fair agreement between the two raters.

You won’t find any simple formulas for calculating SEs or CIs for kappa, but 
the fourfold table web page (StatPages.info/ctab2x2.html) provides 
approximate CIs for Cohen’s Kappa. For the preceding example, the 95 per-
cent CI is 0.202 to 0.735. 

http://statpages.info/ctab2x2.html


Chapter 15

Analyzing Incidence  
and Prevalence Rates  
in Epidemiologic Data

In This Chapter
▶ Determining and expressing how prevalent a condition is
▶ Calculating incidence rates, rate ratios, and their standard errors
▶ Comparing incidence rates between two populations 
▶ Estimating sample size needed to compare incidence rates

E 
pidemiology studies the patterns, causes, and effects of health and diseases 
in defined populations (sometimes very large populations, like entire cities 

or countries, or even the whole world). This chapter describes two concepts, 
prevalence and incidence, that are central to epidemiology and are frequently 
encountered in other areas of biological research as well. I describe how to 
calculate incidence rates and prevalence proportions; then, concentrating on 
the analysis of incidence (because prevalence can be analyzed using methods 
described elsewhere in this book), I describe how to calculate confidence inter-
vals around incidence rates and rate ratios, and how to compare incidence rates 
between two populations.

Understanding Incidence and Prevalence
Incidence and prevalence are two related but distinct concepts. In the following 
sections, I define each of these concepts and provide examples; then I describe 
the relationship between incidence and prevalence.
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Prevalence: The fraction of a population 
with a particular condition

 The prevalence of a condition in a population is the proportion of the popula-
tion that has that condition at any given moment. It’s calculated by dividing 
the number of people in a defined group who have the condition by the total 
number of people in that group.

Prevalence can be expressed as a decimal fraction, a percentage, or a “one out 
of so many” kind of number. For example, a 2011 survey found that 11.3 percent 
of the U.S. adult population has diabetes. So the prevalence of diabetes in U.S. 
adults can be expressed as the decimal 0.113, 11.3 percent, or roughly 1 out of 9.

Because prevalence is a simple proportion, it’s analyzed in exactly the same 
way as any other proportion. The standard error of a prevalence can be esti-
mated by the formulas in Chapter 9; confidence intervals can be obtained 
from exact methods based on the binomial distribution or from formulas 
based on the normal approximation to the binomial distribution (see Chapter 
10); and prevalence can be compared between two or more populations 
using the chi-square or Fisher Exact test (see Chapter 13). For this reason, 
the remainder of this chapter focuses on how to analyze incidence rates.

Incidence: Counting new cases
 The incidence of a condition is the rate at which new cases of that condition 

appear in a population. Incidence is generally expressed as an incidence rate 
(R), defined as the number of observed events (N) divided by the exposure 
(E): R = N/E. Exposure is the product of the number of subjects in the popula-
tion times the interval of time during which new events are being counted. 
Exposure is measured in units of person-time, such as person-days or person-
years, so incidence rates are expressed as the number of cases per unit of 
person-time. The unit of person-time is often chosen so that the incidence 
rate will be a “conveniently sized” number.

 The incidence rate should be estimated by counting events over a narrow 
enough interval of time so that the number of observed events is a small frac-
tion of the total population studied. One year is narrow enough for diabetes 
(only 0.02 percent of the population develops diabetes in a year), but it isn’t 
narrow enough for something like the flu, which 30 percent of the population 
may come down with in a one-year period.

Suppose that last year, in my city with 300,000 adults, 30 adults were newly 
diagnosed with diabetes. The incidence of adult diabetes in my city would 
be calculated as 30 cases in 300,000 adults in one year, which works out to 
0.0001 new cases per person-year. To avoid working with tiny fractional num-
bers like 0.0001 (humans usually prefer to work with numbers between  
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1 and 1,000 whenever possible), it’s more convenient to express this inci-
dence rate as 1 new case per 10,000 patient-years, or perhaps as 10 new cases 
per 100,000 person-years. Similarly, say that in my cousin’s city, with 80,000 
adults, 20 adults were newly diagnosed with diabetes. The incidence rate 
would be calculated as 24 cases in 80,000 people in one year, which works 
out to 24/80,000 or 0.0003 new cases per person-year and is expressed more 
conveniently as 30 new cases per 100,000 person-years. So the incidence rate 
in my cousin’s city is three times as large as the incidence rate in my city.

Understanding how incidence  
and prevalence are related
From the definitions and examples in the preceding sections, you see that 
incidence and prevalence are two related but distinct concepts. The inci-
dence rate tells you how fast new cases of some condition arise in a popu-
lation, and prevalence tells you what fraction of the population has that 
condition at any moment.

You might expect that conditions with higher incidence rates would have higher 
prevalence than conditions with lower incidence rates, and that tends to be true 
when comparing conditions that last for about the same amount of time. But 
there are counter-examples — short-lasting conditions (such as acute infections) 
may have high incidence rates but low prevalence, whereas long-lasting condi-
tions (diabetes, for example) may have low incidence rates but high prevalence.

Analyzing Incidence Rates
The preceding sections show you how to calculate incidence rates and 
express them in convenient units. But, as I emphasize in Chapter 9, whenever 
you report a number you’ve calculated, you should also indicate how precise 
that number is. So how precise are those incident rates? And is the difference 
between two incidence rates significant? The next sections show you how to 
calculate standard errors and confidence intervals for incidence rates and 
how to compare incidence rates between two populations.

Expressing the precision of an incidence rate
The precision of an incidence rate (R) is usually expressed by a confidence 
interval (CI). The standard error (SE) of R isn’t often quoted, because the 
event rate usually isn’t normally distributed; the standard error is usually cal-
culated only as part of the confidence interval calculation.
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Random fluctuations in R are usually attributed entirely to fluctuations in the 
event count (N), assuming the exposure (E) is known exactly — or at least 
much more precisely than N. So the confidence interval for the event rate is 
based on the confidence interval for N. Here’s how you calculate the confi-
dence interval for R:

 1. Calculate the confidence interval (CI) for N.

  Chapters 9 and 10 provide approximate standard error and confidence 
interval formulas, based on the normal approximation to the Poisson 
distribution (see Chapter 25). These approximations are reasonably 
good when N is large (at least 50 events):

  

  Better yet, you can get the exact Poisson confidence interval around 
an event count by using software, such as the online calculator at 
StatPages.info/confint.html.

 2. Divide the lower and upper confidence limits for N by the exposure (E).

  The answer is the confidence interval for the incidence rate R.

For the example of 24 new diabetes cases in one year in a city with 80,000 adults, 
the event count (N) is 24, and the exposure (E) is 80,000 person-years (80,000 
persons for one year).The incidence rate (R) is N/E, which is 24 per 80,000 person- 
years, or 30 per 100,000 person-years. How precise is the incidence rate?

First find the confidence limits for N. Using the approximate formula, 
the 95 percent confidence interval (CI) around the event count of 24 is 

, or 14.4 to 33.6 events. Dividing the lower and 
upper confidence limits of N by the exposure gives 14.4/80,000 to 33.6/80,000, 
which you can express as 18.0 to 42.0 events per 100,000 person-years — the 
confidence interval for the incidence rate.

Using the exact online calculator, you get 15.4 to 35.7 as the 95 percent con-
fidence interval around 24 observed events. Dividing these numbers by the 
80,000 person-years of exposure gives 19.2 to 44.6 events per 100,000 person-
years as the exact 95 percent confidence interval around the incidence rate.

Comparing incidences with the rate ratio
 When comparing incidence rates between two populations, you should calculate 

a rate ratio (RR) by dividing one incidence rate by the other. So for two groups 
with event counts N1 and N2, exposures E1 and E2, and incidence rates R1 and R2, 
respectively, you calculate the rate ratio for Group 2 relative to Group 1 as a ref-
erence, like this:

http://statpages.info/confint.html
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For the example of diabetes incidence in the two cities, you have N1 = 30, E1 
= 300,000, N2 = 24, and E2 = 80,000. The RR for my cousin’s city relative to my 
city is RR = (24/80,000)/(30/300,000), or 3.0, indicating that my cousin’s city 
has three times the diabetes incidence that my city has.

You could calculate the difference (R2 – R1) between two incidence rates if 
you wanted to, but in epidemiology, rate ratios are used much more often 
than rate differences.

Calculating confidence intervals  
for a rate ratio
Whenever you report a rate ratio you’ve calculated, you should also indicate 
how precise that ratio is. The exact calculation of a confidence interval (CI) 
around a rate ratio is quite difficult, but if your observed event counts aren’t 
too small (say, ten or more), then the following approximate formula for the 
95 percent CI around an RR works reasonably well:

95% CI = RR/Q to RR × Q

where .

For other confidence levels, replace the 1.96 in the Q formula with the appro-
priate critical z value for the normal distribution (see Chapter 26).

So for the diabetes example (where N1 = 30, N2 = 24, and RR = 3.0), 
, so the 95 percent CI goes from 3.0/1.71 to 3.0 × 1.71, or 

from 1.75 to 5.13.

The calculations are even simpler if you use the nomogram in Figure 15-1. 
You lay a ruler (or stretch a string) between the values of N1 and N2 on the 
left and right scales, and then read off the two values from the left and right 
sides of the center scale. The right-side number is Q; the left-side number is 
1/Q. So, if you multiply the observed RR by these two numbers, you have the 
95 percent confidence limits. It doesn’t get much easier than that!

For the diabetes example, a ruler placed on 30 and 24 on the left and right 
scales crosses the center scale at the numbers 0.585 and 1.71, consistent with 
the preceding calculations.

Comparing two event rates
Two event rates (R1 and R2), based on N1 and N2 events and E1 and E2 expo-
sures, can be tested for a significant difference by calculating the 95 percent 
confidence interval (CI) around the rate ratio (RR) and observing whether that 
CI crosses the value 1.0 (which indicates identical rates). If the 95 percent CI 
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includes 1, the RR isn’t significantly different from 1, so the two rates aren’t  
significantly different from each other (p > 0.05). But if the 95 percent CI 
doesn’t include 1, the RR is significantly different from 1, so the two rates are 
significantly different from each other (p < 0.05).

 

Figure 15-1: 
Nomogram 

to calculate 
a 95 percent 
confidence 

interval 
around a 

rate ratio.
 

 Illustration by Wiley, Composition Services Graphics
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For the diabetes example, the observed rate ratio was 3.0, with a 95 percent 
confidence interval of 1.75 to 5.13, which doesn’t include the value 1. So the 
rate ratio is significantly greater than 1, and I would conclude that my cousin’s 
city has a significantly higher diabetes incidence rate than my city (p < 0.05).

This test is very easy to do (requiring no calculations at all!) using the Figure 
15-1 nomogram. Just lay the ruler across the N1 and N2 values on the left and 
right scales, and look at the numbers on the center scale. If your observed RR 
is lower than the left-side number or higher than the right-side number, the 
two event rates are significantly different from each other (the RR is signifi-
cantly different from 1.0), at the p < 0.05 level.

For the diabetes example, a ruler placed on 30 and 24 on the left and right 
scales crosses the center scale at the numbers 0.585 and 1.71, so any 
observed rate ratio outside of this range is significantly different from 1, con-
sistent with the foregoing calculations.

Comparing two event counts  
with identical exposure
If — and only if — the two exposures (E1 and E2) are identical, there’s a really 
simple rule for testing whether two event counts (N1 and N2) are significantly 
different at the p < 0.05 level:

If , then the Ns are significantly different (p < 0.05).

 If the square of the difference is more than four times the sum, then the num-
bers are significantly different (p < 0.05).

The value 4 appearing in this rule is an approximation to 3.84, the chi-square 
value corresponding to p = 0.05 (see Chapter 25 for more info).

For example, if there were 30 fatal auto accidents in your town last year and 
40 this year, are things getting more dangerous, or was the increase just 
random fluctuations? Using the simple rule, you calculate (30 – 40)2/(30 + 40) 
= 100/70 = 1.4, which is less than 4. Having 30 events isn’t significantly differ-
ent from 40 events (during equal time intervals), so the apparent increase 
could just be “noise.” But had the number of events gone from 30 to 50 
events, the jump would have been significant because (30 – 50)2/(30 + 50) = 
400/80 = 5.0, which is greater than 4.

Estimating the Required Sample Size
Sample-size calculations for rate comparisons are more difficult than you want 
to attempt by hand. Instead, you can use the Excel file SampleSizeCalcs.xls, 
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available at www.dummies.com/extras/biostatistics. You may want to 
review Chapter 3 for a refresher on the concepts of power and sample size.

As in all sample-size calculations, you need to specify the desired statistical 
power (often set to 80 percent) and the alpha level for the test (often set to 
0.05). When comparing event rates (R1 and R2) between two groups, consider-
ing R1 to be the reference group, you must also specify

 ✓ The expected rate in the reference group (R1)
 ✓ The effect size of importance, expressed as the rate ratio RR = R2/R1 and 

entered into the spreadsheet as the expected value of R2

 ✓ The expected ratio of exposure in the two groups (E2/E1), entered into 
the GroupSize Ratio field of the spreadsheet

When you enter the necessary parameters into the spreadsheet, it will give 
you the required exposure for each group and the number of events you can 
expect to see in each group.

For example, suppose you’re designing an experiment to test whether rota-
virus gastroenteritis is more prevalent in inner cities than in the suburbs. 
You’ll enroll an equal number of inner city and suburban residents and follow 
them for one year to see whether they come down with rotavirus. Say that 
the incidence of rotavirus in suburbia is known to be 1 case per 100 person-
years (an incidence rate of 0.01 case per patient-year). You want to have an 
80 percent chance of getting a significant result of p < 0.05 (that is, 80 percent 
power at 0.05 alpha) when comparing the incidence rates between the two 
areas if they differ by more than 25 percent (that is, a rate ratio of 1.25).

You’d fill in the fields of the spreadsheet, as shown in Figure 15-2.

The spreadsheet calculates that you need more than 28,000 person-years 
of observation in each group (a total of almost 57,000 subjects in a one-year 
study) in order to have enough observed events to have an 80 percent chance 
of getting a significant result when comparing rotavirus incidence between 
inner-city and suburban residents. This shockingly large requirement illustrates 
the difficulty of studying the incidence rates of rare illnesses.

 

Figure 15-2: 
Calculating 
the sample 

size 
required to 

compare 
two inci-

dence rates.
 

 Illustration by Wiley, Composition Services Graphics

http://www.dummies.com


Chapter 16 

Feeling Noninferior (Or Equivalent)
In This Chapter
▶ Demonstrating the absence of an effect in your data
▶ Testing for bioequivalence, therapeutic noninferiority, and absence of harmful effects

M 
any statistical tests let you determine whether two things are different 
from each other, like showing that a drug is better than a placebo, or 

that the blood concentration of some enzyme is higher in people with some 
medical condition than in people without that condition. But sometimes you 
want to prove that two (or more) things are not different. Here are three exam-
ples I refer to throughout this chapter:

 ✓ Bioequivalence: You’re developing a generic formulation to compete 
with a name-brand drug, so you have to demonstrate that your product 
is bioequivalent to the name-brand product; that is, that it puts essen-
tially the same amount of active ingredient into the bloodstream.

 ✓ Therapeutic noninferiority: You want to show that your new treatment 
for some disease is no worse than the current best treatment for that 
disease.

 ✓ Absence of harmful effects: Your new drug must demonstrate that, 
compared to a placebo, it doesn’t prolong the QT interval on an ECG  
(see Chapter 6 for more info on the role of QT testing during drug  
development).

This chapter describes how to analyze data from equivalence and noninfe-
riority or nonsuperiority studies. Nonsuperiority studies are less frequently 
encountered than noninferiority studies, and the analysis is basically the 
same, so for the rest of this chapter, whatever I say about noninferiority also 
applies (in the reverse direction) to nonsuperiority.
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Understanding the Absence of an Effect
 Absence of proof is not proof of absence! Proving the total absence of an effect 

statistically is impossible. For example, you can’t interpret a nonsignificant 
outcome from a t test as proving that no difference exists between two groups. 
The difference may have been real but small, or your sample size may have 
been too small, or your analytical method may not have been precise enough 
or sensitive enough. To demonstrate the absence of an effect, you need to test 
your data in a special way.

Defining the effect size: How  
different are the groups?
Before being able to test whether or not two groups are different, you first 
have to come up with a numerical measure that quantifies how different the 
two groups are. I call this the effect size, and it’s defined in different ways for 
different kinds of studies:

 ✓ Bioequivalence studies: In bioequivalence (BE) studies, the amount of 
drug that gets into the bloodstream is usually expressed in terms of the 
AUC — the area under the curve of blood concentration of the drug versus 
time, as determined from a pharmacokinetic analysis (see Chapter 5). 
The effect size for BE studies is usually expressed as the ratio of the AUC 
of the new formulation divided by the AUC of the reference formulation 
(such as the brand-name drug). A ratio of 1.0 means that the two prod-
ucts are perfectly bioequivalent (that is, 1.0 is the no-effect value for a BE 
study).

 ✓ Therapeutic noninferiority studies: In a therapeutic trial, the effect size 
is often expressed as the difference or the ratio of the efficacy endpoint 
for that trial. So for a cancer treatment trial, it could be the between-
group difference in any of the following measures of efficacy: median 
survival time, five-year survival rate, the percent of subjects respond-
ing to the treatment, or the hazard ratio from a survival regression 
analysis (see Chapter 24). For an arthritis treatment trial, it could be the 
between-group difference in pain score improvements or the percentage 
of subjects reporting an improvement in their condition. Often the effect 
size is defined so that a larger (or more positive) value corresponds to a 
better treatment.

 ✓ QT safety studies: In a QT trial, the effect size is the difference in QT 
interval prolongation between the drug and placebo.
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Defining an important effect size:  
How close is close enough?
Instead of trying to prove absolutely no difference between two groups (which 
is impossible), you need only prove no important difference between the 
groups. To do the latter, you must first define exactly what you mean by an 
important difference — you must come up with a number representing the 
smallest effect size you consider to be clinically meaningful. If the true effect 
size (in the entire population) is less than that amount, then for all practical 
purposes it’s like no difference at all between the groups. The minimal impor-
tant effect size is referred to by several names, such as allowable difference 
and permissible tolerance.

Just how much of an effect is important depends on what you’re measuring:

 ✓ For bioequivalence studies: The customary tolerance in the AUC ratio is 
0.8 to 1.25; two drugs are considered equivalent if their true AUC ratio lies 
within this range.

 ✓ For therapeutic noninferiority studies: The tolerance depends on the 
disease and the chosen efficacy endpoint. It’s usually established by 
consensus between expert clinicians in the particular discipline and the 
regulatory agencies.

 ✓ For QT safety studies: Current regulations say that the drug must not 
prolong the QT interval by more than 10 milliseconds, compared to 
placebo. If the true prolongation is less than 10 milliseconds, the drug is 
judged as not prolonging QT.

Recognizing effects: Can you spot  
a difference if there really is one?
When you’re trying to prove the absence of some effect, you have to con-
vince people that your methodology isn’t oblivious to that effect and that  
you can actually spot the effect in your data when it’s truly present in the 
population you’re studying.

For example, I can always “prove” statistically that a drug doesn’t prolong  
the QT interval simply by having the ECGs read by someone who hasn’t  
the foggiest idea of how to measure QT intervals! That person’s results will 
consist almost entirely of random “noise,” and the statistical tests for a QT 
prolongation will come out nonsignificant almost every time.
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Here the concept of assay sensitivity comes into the picture. I use the word 
assay here to refer to the entire methodology used in the study — not just a 
laboratory assay. To prove assay sensitivity, you need to show that you can 
recognize a difference if it’s really there.

 You demonstrate adequate assay sensitivity by using a positive control. In 
addition to the groups that you’re trying to show are not different, you must 
also include in your study another group that definitely is different from the 
reference group:

 ✓ In bioequivalence studies: One simple and obvious choice is the brand-
name product itself, but at a different dose than that of the reference 
group — perhaps half (or maybe twice) the standard dose. To prove 
assay sensitivity, you’d better get a significant result when comparing 
the positive control to the standard product.

 ✓ For therapeutic noninferiority studies: Noninferiority studies have a 
real problem with regard to assay sensitivity — there’s usually no way 
to use a positive control (a truly inferior treatment) in the study because 
noninferiority studies are generally used in situations when it would be 
unethical to withhold effective treatment from people with a serious ill-
ness. So when a noninferiority trial comes out successful, you can’t tell 
whether it was a well-designed trial on a treatment that’s truly noninfe-
rior to the reference treatment or whether it was a badly designed trial 
on a truly inferior treatment.

 ✓ For QT safety studies: The drug moxifloxacin (known to prolong QT, but 
not by a dangerous amount) is often used as a positive control. Subjects 
given moxifloxacin had better show a statistically significant QT prolon-
gation compared to the placebo.

Proving Equivalence and Noninferiority
After you understand the lack of meaningful differences (see the previous 
section), you can put all the concepts together into a statistical process for 
demonstrating that there’s no important difference between two groups.

Equivalence and noninferiority can be demonstrated statistically by using 
significance tests in a special way or by using confidence intervals.

Using significance tests
Significance tests are used to show that an observed effect is unlikely to be 
due only to random fluctuations. (See Chapter 3 for a general discussion 
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of hypothesis testing.) You may be tempted to test for bioequivalence by 
comparing the AUCs of the two drug formulations with a two-group Student t 
test or by comparing the ratio of the AUCs to the no-effect value of 1.0 using 
a one-group t test. Those approaches would be okay if you were trying to 
prove that the two formulations weren’t exactly the same, but that’s not what 
equivalence testing is all about.

Instead, you have to think like this:

 ✓ Bioequivalence: The rules for drug bioequivalence say that the true AUC 
ratio has to be between 0.8 and 1.25. That’s like saying that the observed 
mean AUC ratio must be significantly greater than 0.8, and it must be 
significantly less than 1.25. So instead of performing one significance 
test (against the no-effect value of 1.0), you perform two tests — one 
against the low (0.8) limit and one against the high (1.25) limit. Each of 
these tests is one-sided, because each test is concerned only with differ-
ences in one direction, so this procedure is called the two one-sided tests 
method for equivalence testing.

 ✓ Therapeutic noninferiority: You use the same idea for noninferiority 
testing, but you have to show only that the new treatment is significantly 
better than the worst end of the permissible range for the reference treat-
ment. So if a cancer therapy trial used a five-year survival rate as the 
efficacy variable, the reference treatment had a 40 percent rate, and the 
permissible tolerance was five percent, then the five-year survival rate for 
the new treatment would have to be significantly greater than 35 percent.

 ✓ QT safety: You have to show that the drug’s true QT prolongation, relative 
to placebo, is less than 10 milliseconds (msec). So you have to show that 
the excess prolongation (drug minus placebo) is significantly less than 
10 milliseconds.

If these significance-testing approaches sound confusing, don’t worry — you 
can test for equivalence and noninferiority another way that’s much easier to 
visualize and understand, and it always leads to exactly the same conclusions.

Using confidence intervals
In Chapter 10, I point out that you can use confidence intervals as an alterna-
tive to the usual significance tests by calculating the effect size, along with its 
confidence interval (CI), and checking whether the CI includes the no-effect 
value (0 for differences; 1 for ratios). It’s always true that an effect is statisti-
cally significant if, and only if, its CI doesn’t include the no-effect value. And 
confidence levels correspond to significance levels: 95 percent CIs correspond 
to p = 0.05; 99 percent CIs to p = 0.01, and so on.
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Figure 16-1 illustrates this correspondence. The vertical line corresponds to the 
no-effect value (1 for a pharmacokinetic study, using the AUC ratio, in the left dia-
gram; 0 for efficacy testing, using the difference in five-year survival, in the right 
diagram). The small diamonds are the observed value of the effect size, and the 
horizontal lines are the 95 percent CIs. When confidence intervals span across 
the no-effect value, the effect is not significant; when they don’t, it is significant.

 

Figure 16-1: 
Using 95 
percent 

confidence 
intervals 

to test for 
significant 

effects for a 
pharmaco-

kinetics trial 
and a cancer 
therapy trial.

 
 Illustration by Wiley, Composition Services Graphics

You can also use confidence intervals to analyze equivalence and noninferiority/ 
nonsuperiority studies, as shown in Figure 16-2.
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ity using the 

difference 
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survival.
  Illustration by Wiley, Composition Services Graphics
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You can see two additional vertical lines, representing the lower and upper 
limits of the allowable tolerance. This time, you don’t care whether the  
confidence interval includes the no-effect line (which is why I made it so 
light). Instead, you’re interested in whether the line stays within the toler-
ance lines:

 ✓ Equivalence: You can conclude equivalence if, and only if, the entire CI 
fits between the two tolerance lines.

 ✓ Noninferiority and nonsuperiority: You can conclude noninferiority if, 
and only if, the entire CI lies to the right of the worst tolerance line. (It 
doesn’t matter how high the CI extends.) You can conclude nonsuperior-
ity if, and only if, the entire CI lies to the left of the better tolerance line. 
(It doesn’t matter how low the CI extends.)

 ✓ QT testing: For a drug to be judged as not substantially prolonging the 
QT interval, the CI around the difference in QT prolongation between 
drug and placebo must never extend beyond 10 milliseconds.

When testing noninferiority or nonsuperiority at the 5 percent significance 
level, you should use 95 percent CIs, as you would expect. But when test-
ing equivalence at the 5 percent level, you should use 90 percent CIs! That’s 
because for equivalence, the 5 percent needs to be applied at both the high 
and low ends of the CI, not just at one end. And for QT testing, the 5 percent 
is applied only at the upper end.

Some precautions about  
noninferiority testing
Although noninferiority testing is sometimes necessary, it has a number of 
weaknesses that you should keep in mind:

 ✓ No positive control: In the earlier section “Recognizing effects: Can you 
spot a difference if there really is one?” I describe how noninferiority 
trials usually can’t incorporate a truly ineffective treatment, for ethical 
reasons.

 ✓ No true proof of efficacy: Proving that a new drug isn’t inferior to a 
drug that has been shown to be significantly better than placebo isn’t 
really the same as proving that the new drug is significantly better than 
placebo. The new drug may be less effective than the reference drug 
(perhaps even significantly less effective) but still within the allowable 
tolerance for noninferiority.
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 ✓ Noninferiority creep: If a new drug is tested against a reference drug 
that was, itself, approved on the basis of a noninferiority study, this new 
“third-generation” drug may be less effective than the reference drug, 
which may have been less effective than the first drug that was tested 
against placebo. Each successive generation of noninferior drugs may be 
less effective than the preceding generation. This so-called noninferiority 
creep (sometimes referred to as bio-creep) is a matter of considerable 
concern among researchers and regulatory agencies.

  

✓ Estimating sample size: Estimating the required sample size needed for 
equivalence and noninferiority or nonsuperiority studies has no simple 
rules of thumb; you need to use special software designed for these 
studies. Some web pages are available to estimate sample size for some 
of these studies; these are listed on the StatPages.info website.

http://StatPages.info
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 Get the scoop on model building with stepwise regression in a free article at  
www.dummies.com/extras/biostatistics.

http://www.dummies.com/extras/biostatistics


In this part . . .
 ✓ Understand what correlation and regression are. (Simply 

stated: Correlation refers to the strength of the relationship 
between two variables, and regression refers to a set of 
techniques for describing the relationship between two 
variables.)

 ✓ Get a handle on the simplest kind of regression — fitting a 
straight line to your data.

 ✓ Do regression analysis when there’s more than one predictor 
variable. (As you may guess, this type of regression is called 
multiple regression.)

 ✓ Predict a yes-or-no outcome with logistic regression, and 
assess sensitivity and specificity with ROC curves.

 ✓ Find out about other useful kinds of regression you encounter 
in biological research, such as Poisson regression and non-
linear regression.



Chapter 17

Introducing Correlation  
and Regression

In This Chapter
▶ Getting a handle on correlation analysis
▶ Understanding the many kinds of regression analysis

C 
orrelation, regression, curve-fitting, model-building — these terms all 
describe a set of general statistical techniques dealing with the relation-

ships among variables. This chapter provides an overview of the concepts 
and terminology that I use throughout Parts IV and V.

Introductory statistics courses usually present only the simplest form of cor-
relation and regression, equivalent to fitting a straight line to a set of data. 
But in the real world, things are seldom that simple — more than two vari-
ables may be involved, and the relationship among them can be quite com-
plicated. You can study correlation and regression for many years and not 
master all of it. In this chapter, I cover the kinds of correlation and regression 
most often encountered in biological research and explain the differences 
between them. I also explain some terminology — predictors and outcomes; 
independent and dependent variables; parameters; linear and nonlinear rela-
tionships; and univariate, bivariate, multivariate, and multivariable analysis.

 The words correlation and regression are often used interchangeably, but they 
refer to two different things: 

 ✓ Correlation refers to the strength of the relationship between two or 
more variables.

 ✓ Regression refers to a set of techniques for describing the relationship 
between two or more variables. 
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Correlation: How Strongly Are  
Two Variables Associated?

Correlation refers to the extent to which two variables are related. In the  
following sections, I describe a measurement called the Pearson correlation 
coefficient, and I discuss ways to analyze correlation coefficients.

 The term co-related was first used by Francis Galton in 1888 in a paper describ-
ing the extent to which physical characteristics could be inherited from gen-
eration to generation. He said, “Two variable organs are said to be co-related 
when the variation of the one is accompanied on the average by more or 
less variation of the other, and in the same direction.” Within ten years, 
Karl Pearson (the guy who invented the chi-square test that I describe in 
Chapter 13) had developed a formula for calculating the correlation coefficient 
from paired values of two variables (X and Y).

Lining up the Pearson  
correlation coefficient

 The Pearson correlation coefficient (represented by the symbol r) measures 
the extent to which two variables (X and Y), when graphed, tend to lie along a 
straight line. If the variables have no relationship (if the points scatter all over 
the graph), r will be 0; if the relationship is perfect (if the points lie exactly 
along a straight line), r will be +1 or –1. Correlation coefficients can be positive 
(indicating upward-sloping data) or negative (indicating downward-sloping 
data). Figure 17-1 shows what several different values of r look like.

 

Figure 17-1: 
100 data 

points, with 
varying 

degrees of 
correlation.

 
 Illustration by Wiley, Composition Services Graphics
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Note: The Pearson correlation coefficient measures the extent to which the 
points lie along a straight line. If your data lies closely along a curved line, the 
r value may be quite low, or even zero, as seen in Figure 17-2. All three graphs 
in Figure 17-2 have the same amount of random scatter in the points, but they 
have quite different r values. So you shouldn’t interpret r = 0 as evidence of 
independence (lack of association) between two variables; it could indicate 
only the lack of a straight-line relationship between the two variables.

 

Figure 17-2: 
Pearson r is 
based on a 

straight-line 
relationship 

and is too 
small (or 

even zero) 
if the rela-
tionship is 
nonlinear.

 

 Illustration by Wiley, Composition Services Graphics

Analyzing correlation coefficients
The following are the common kinds of statistical analyses that are per-
formed on correlation coefficients. I include formulas and examples here 
because the calculations aren’t too difficult and because your software may 
not provide these calculations in a convenient form (see Chapter 4 for an 
introduction to statistical software).

Is r significantly different from zero?
Because your raw data (the X and Y values) always have random fluctuations 
(either sampling fluctuations or measurement imprecision, as I describe in 
Chapter 9), a calculated correlation coefficient is also subject to random 
fluctuations. Even when X and Y are completely independent in the popula-
tion, your calculated r value is almost never exactly zero. One way to test for 
a significant association between X and Y is to test whether r is significantly 
different from zero by calculating a p value from the r value. (A p value is the 
probability that random fluctuations alone, in the absence of any real effect 
in the population, could have produced an observed effect (in this case, 
an observed r value) that’s at least as large as what you observed in your 
sample; see Chapter 3 for more on p values.)
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The correlation coefficient has a strange sampling distribution, but the quan-
tity t — calculated from the observed correlation coefficient r, based on N 
observations, by the formula  — fluctuates in accordance 
with the Student t distribution (see Chapter 25) with N – 2 degrees of freedom 
(df). You can get a p value from a t value by going to a table of the Student t 
distribution or by using an online calculator.

For example, if r = 0.500 for a sample of 12 subjects, then , 
which works out to t = 1.8257, with 10 degrees of freedom. Using the StatPages.
info/pdfs.html web page and entering the t and df values, you get p = 0.098, 
which is greater than 0.05, so the r value of 0.500 is not significantly different from 
zero. (Over the years, p ≤ 0.05 has become accepted as a reasonable criterion for 
declaring significance.)

How precise is an r value?
You can calculate confidence limits around an observed r value using a  
somewhat roundabout process. The quantity z, calculated by the Fisher z 
transformation , is approximately normally distributed 
with a standard deviation of , so using the formulas for normal-
based confidence intervals (see Chapter 10), you can calculate the low 
and high 95 percent confidence limits around z:  and 

. You can turn these into the corresponding confidence 
limits around r by the reverse of the z transformation: r = (e2z – 1)/(e2z + 1), 
for z = zLow and z = zHigh.

Using the example from the preceding section of r = 0.500 for a sample of 12 
subjects, you perform the following steps:

 1. Calculate the Fisher z transformation of the observed r value:

  

 2. Calculate the low and high 95 percent confidence limits for z:

  

  

 3. Calculate the low and high 95 percent confidence limits for r:

  rLow = (e2 × (–0.104) – 1)/(e2 × (–0.104) + 1) = –0.104

  rHigh = (e2 × 1.203 – 1)/(e2 × 1.203 + 1) = 0.835

http://statpages.info/pdfs.html
http://statpages.info/pdfs.html
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Notice that the 95 percent confidence interval goes from –0.104 to +0.835, a 
range that includes the value zero. This means that the true r value could 
indeed be zero, which is consistent with the nonsignificant p value of 0.098 
that you obtained from the significance test of r in the preceding section.

Are two r values significantly different?
Suppose you have two correlation coefficients and you want to test whether 
they have a significant difference between them. Whether the two r values are 
based on the same variables or are from the same group of subjects doesn’t 
matter. The significance test for comparing two correlation coefficient values 
(call them r1 and r2), obtained from N1 and N2 subjects, respectively, utilizes the 
Fisher z transformation to get z1 and z2. The difference (z2 – z1) has a standard 
deviation of . You obtain the test statistic for 
the comparison by dividing the difference by its standard error; you can convert 
this to a p value by referring to a table (or web page) of the normal distribution.

For example, if you want to compare an r value of 0.4, based on 100 subjects, 
with an r value of 0.6, based on 150 subjects, you perform the following steps:

 1. Calculate the Fisher z transformation of each observed r value:

  

  

 2. Calculate the (z2 – z1) difference:

  0.693 – 0.424 = 0.269

 3. Calculate the standard error of the (z2 – z1) difference:

  

 4. Calculate the test statistic:

  0.269/0.131 = 2.05

 5. Look up 2.05 in a normal distribution table or web page such as 
StatPages.info/pdfs.html, which gives the p value of 0.039 for a 
two-sided test (where you’re interested in knowing whether either r is 
larger than the other).

  The p value of 0.039 is less than 0.05, meaning that the two correlation 
coefficients are significantly different from each other.

http://StatPages.info/pdfs.html
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What’s the required sample size for a correlation test?
 If you’re planning a study whose main purpose is to determine whether two 

variables (call them X and Y) are significantly correlated, you want to make sure 
that you have a large enough sample size to give you a good chance of show-
ing significance. (Find out more about power and sample size in Chapter 3.) To 
perform a sample-size calculation, you need to specify three things (the design 
parameters of the study):

 ✓ The alpha level of the test: The p value that’s considered significant 
when you’re testing the correlation coefficient. Usually this is set to 0.05, 
unless you have special considerations.

 ✓ The desired power of the test: The probability that the regression 
comes out significant. Often this is set to 0.8 (or 80%).

 ✓ The effect size of importance: The smallest r value that you consider 
“worth knowing about.” If the true r is less than this value, then you 
don’t care whether the test comes out significant, but if r is greater than 
this value, you want to get a significant result.

  I can’t tell you what value of r is worth knowing about; it depends on 
your research goals. If you’re hoping to be able to estimate Y from a 
known value of X, then r has to be fairly high, perhaps 0.8 or higher. 
But in more pure science applications, where you’re trying to dis-
cover cause-and-effect relationships in biological systems, you may be 
interested in knowing about even weak associations like r = 0.1 or 0.2. 
Figure 17-1 may help you choose the r value that’s worth knowing about 
for your study.

 You can use software like G*Power (see Chapter 4) to perform the sample-size 
calculation, but you also have some fairly simple formulas for getting a pretty 
good sample-size estimate. They all involve dividing a “magic number,” which 
depends on the desired power and alpha level, by the square of the “impor-
tant” r value. Here are the formulas for a few commonly used values of power 
and alpha:

 ✓ For 80 percent power at 0.05 alpha, the required N = 8/r2.

 ✓ For 90 percent power at 0.05 alpha, the required N = 10/r2.

 ✓ For 80 percent power at 0.01 alpha, the required N = 11/r2.

 ✓ For 90 percent power at 0.01 alpha, the required N = 14/r2.

For example, if you want to be 80 percent sure you’ll get p < 0.05 when test-
ing for a significant relationship when the true r is equal to 0.2, then you need 
about 8/0.22, which is 8/0.04, or about 200 data points. The exact answer, 
obtained from software like G*Power, is 194 data points. The preceding 
simple approximations slightly overestimate the required N, which is on the 
safe side (it’s better to have slightly more subjects than you need than not to 
have enough subjects for adequate power).
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Regression: What Equation  
Connects the Variables?

Regression analysis goes beyond just asking whether two (or more) variables 
are associated; it’s concerned with finding out exactly how those variables 
are associated — what formula relates the variables together. In the following 
sections, I explain the purpose of regression analysis, note some terms and 
notation typically used, and describe common types of regression.

Understanding the purpose  
of regression analysis
You may be wondering why people would want to do regression analysis in 
the first place. Fitting a formula to a set of data can be useful in a lot of ways:

 ✓ You can test for a significant association or relationship between two 
or more variables. This is exactly equivalent to testing for a significant 
correlation between the variables but is more general. This is the main 
reason many researchers do regressions.

 ✓ You can get a compact representation of your data. This is especially 
useful in the more physical sciences, where you deal with precise mea-
surements. If you measure the vapor pressure of a liquid at every degree 
from –100 degrees to +300 degrees, the resulting data could occupy sev-
eral printed pages. But if you can find a formula that fits the data to within 
its measured precision, that formula may well fit on one printed line.

 ✓ You can make precise predictions, or prognoses. With a properly fitted 
survival function (see Chapter 24), you can generate a customized sur-
vival curve for a newly diagnosed cancer patient based on that patient’s 
age, gender, weight, disease stage, tumor grade, and other factors. A bit 
morbid, perhaps, but you could certainly do it.

 ✓ You can do mathematical manipulations easily and accurately on a fitted 
function that may be difficult or inaccurate to do graphically on the raw 
data. For example, you can

	 •	Interpolate	between	two	measured	values.

	 •	Extrapolate	beyond	the	measured	range.	Extrapolating	a	fitted	
formula beyond the range of observed data it was fitted to can be 
risky! There’s no guarantee that the curve that fits your observed 
data closely will realistically describe the relationship outside the 
range of values you observed. Many outstanding “extrapolation 
failures” have occurred throughout the history of science.
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	 •	Smooth	the	data	(estimate	what	the	Y variable would be without 
the random fluctuations).

	 •	Find	minima,	maxima,	slopes,	integrals	(areas	under	the	curve),	
and so on.

 ✓ If you’re developing an assay (a laboratory analysis to determine the 
concentration of some substance) or an analytical instrument, you can 
prepare calibration curves, which you can then use to automatically cal-
culate the result from the instrument’s raw readings.

 ✓ You can test a theoretical model, such as a multicompartment kinetic 
model of a drug’s absorption, distribution, metabolism, and elimination 
from the body. By fitting this model to observed data, you can validate 
(or perhaps invalidate) the proposed model.

 ✓ You can obtain numerical values for the parameters that appear in the 
model. If the model has a theoretical basis and isn’t just an empirical  
formula (one that just happens to have a shape that resembles your 
data), then the parameters appearing in that model will probably have 
physical (or physiological) meaning. For example, one of the parameters 
in a dose-response model may be the ED50 — the dose that produces 
one-half the maximum effect.

Talking about terminology and  
mathematical notation

 A regression model is usually a formula that describes how one variable (called 
the dependent variable, the outcome, or the result) depends on one or more 
other variables (called independent variables, or predictors) and on one or 
more parameters. (Regression models can have more than one dependent 
variable, as I describe below.) Parameters aren’t variables; they’re other terms 
that appear in the formula that make the function come as close as possible 
to the observed data. For simple regressions (one predictor and one out-
come variable), you can think of the parameters as specifying the position, 
orientation, and shape of the fitted line on the scatter plot (like the slope and 
Y-intercept of a straight line).

If you have only one independent variable, it’s often designated by X, and the 
dependent variable is designated by Y. If you have more than one indepen-
dent variable, variables are usually designated by letters toward the end of 
the alphabet (W, X, Y, Z). Parameters are often designated by letters toward 
the beginning of the alphabet (a, b, c, d). There’s no consistent rule regarding 
uppercase versus lowercase letters.
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Sometimes a collection of predictor variables is designated by a subscripted 
variable (X1, X2, and so on) and the corresponding coefficients by another 
subscripted variable (b1, b2, and so on).

So in mathematical texts, you may see a regression model with three predic-
tors written in one of several ways, such as

 ✓ Z = a + bX + cY + dV (different letters for each variable and parameter)

 ✓ Y = b0 + b1 X1 + b2 X2 (using a general subscript-variable notation)

 In practical work, using the actual names of the variables from your data and 
using meaningful terms for parameters is easiest to understand and least 
error-prone. For example, consider the equation for the first-order elimination 
of an injected drug from the blood, . This form, with its 
short but meaningful names for the two variables, Conc (blood concentration) 
and Time (time after injection), and the two parameters, Conc0 (concentration 
at Time = 0) and ke (elimination rate constant), would probably be more mean-
ingful to a reader than Y = a × e-b × X.

Classifying different kinds of regression
Regression is a very broad topic, and you can devote many semesters to 
exploring its many varieties and subtleties. In the following sections, I list 
(and briefly describe) the regression techniques that are common in biologi-
cal research. I describe these different kinds of regressions in much more 
detail in Chapters 18 through 21 and Chapter 24.

You can classify regression on the basis of

 ✓ How many outcomes (dependent variables) appear in the model

 ✓ How many predictors (independent variables) appear in the model

 ✓ What kind of data the outcome variable is

 ✓ What kind of mathematical form the model takes

Indicating the number of outcomes
Statisticians distinguish between regression models that have only one out-
come variable and models that have two or more outcome variables:

 ✓ Univariate regression has only one outcome variable.

 ✓ Multivariate regression has two or more outcome variables. Multiple out-
comes can be one kind of variable at two or more time points (like pain 
levels measured at one, two, and three hours after a surgical procedure) 
or two different kinds of variables (such as pain level and nausea level).
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Indicating the number of predictors
Statisticians distinguish between regression models that have only one pre-
dictor and models that have two or more predictor variables:

 ✓ Univariable regression has only one predictor variable.

 ✓ Multivariable regression has two or more predictor variables.

Here’s where things get bizarre. Notice the slight difference in spelling —  
univariate versus univariable, and multivariate versus multivariable. That dif-
ference is important when talking to statisticians — they use the “-variate” 
words when talking about the number of outcomes, and “-variable” words when 
talking about the number of predictors. But medical researchers almost never 
use the terms univariable or multivariable; they use univariate and multivariate 
when talking about the number of predictors, and they often refer to a regres-
sion model with multiple outcome variables simply as multiple regression.

And it gets worse! Sometimes, regression with only one predictor is referred 
to as bivariate regression because a total of two variables are involved — one 
predictor and one outcome. It’s probably best to never use the term bivariate 
regression at all.

Fortunately, this confusion over nomenclature usually won’t cause you any 
trouble when it comes time to analyze your data. Any software that can 
handle multiple predictors can also easily handle a model with only one pre-
dictor. But the distinction is still important to keep in mind, because as soon 
as you have two or more predictors, a lot of strange and unexpected things 
can happen. So I dedicate Chapter 19 to describing the situations you need to 
be aware of whenever you work with regression models with more than one 
predictor.

Examining the outcome variable’s type of data
You can also classify regression based on what kind of data the outcome vari-
able is:

 ✓ You use ordinary regression when the outcome is a continuous variable 
whose random fluctuations are governed by the normal distribution. 
(Chapters 18 and 19 deal with this kind of regression.)

 ✓ You use logistic regression when the outcome variable is a dichotomous 
category (like lived or died) whose fluctuations are governed by the 
binomial distribution. (See Chapter 20 for details.)

 ✓ You use Poisson regression when the outcome variable is the number of 
occurrences of a sporadic event whose fluctuations are governed by the 
Poisson distribution. (Chapter 21 has the scoop.)
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 ✓ You use survival regression when the outcome is a time to event, often 
called a survival time (even when the event isn’t death). Survival analysis 
is so important in biological research, and the techniques are so special-
ized, that I devote all of Part V to the methods of summarizing and ana-
lyzing survival data.

Figuring out what kind of function is being fitted
A third way to classify different types of regression analysis is according to 
whether the mathematical formula for the model is linear or nonlinear in the 
parameters.

In a linear function, you multiply each predictor variable by a parameter and 
then add these products to give the predicted value. You can also have one 
more parameter that isn’t multiplied by anything — it’s called the constant 
term or the intercept. Here are some linear functions:

 ✓ Y = a + bX

 ✓ Y = a + bX + cX2 + dX3

 ✓ Y = a + bX + cLog(W) + dX/Cos(Z)

In these examples, Y is the dependent variable (the outcome); X, W, and Z are 
the independent variables (predictors); and a, b, c, and d are parameters.

The predictor variables can appear in a formula in nonlinear form, like 
squared or cubed, inside functions like Log and Sin, and multiplied by each 
other; but as long as the coefficients appear only in a linear way (each coef-
ficient multiplying a term involving predictor variables, with the terms added 
together), the function is still considered linear in the parameters.

A nonlinear function is anything that’s not a linear function. For example:

Y = a/(b + e–c × X)

is nonlinear in the parameters because the parameter b is in the denominator 
of a fraction, and the parameter c is in an exponent. The parameter a appears 
in a linear form, but if any of the parameters appear in a nonlinear way, the 
function is said to be nonlinear in the parameters.

 Hardly anything is perfectly linear in the real world, but almost everything 
is linear to a first approximation. Physical scientists deal extensively with 
nonlinear regression because they’re trying to accurately model relatively 
precise data and well-developed theoretical models. Social scientists, on the 
other hand, almost always use linear methods to deal with their much “softer” 
measurements (opinion surveys, subjective ratings, and so on) and empirical 
models. Biological researchers tend to occupy a middle ground, with more 
precise measurements and models that have at least some theoretical basis. 
So nonlinear regression does come up frequently in biological research.
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Coming up with lots of different kinds of regression
The three different ways of “slicing the cake” — number of predictors, type of 
outcome variable, and linearity of the function — apply in all combinations. 
You can have

 ✓ A linear model with one predictor and a continuous outcome. This is the 
simplest kind of regression: the straight line (see Chapter 18).

 ✓ A linear model with many predictors of a continuous outcome. This is 
commonly referred to in medical research as multiple regression, although 
the proper name is linear multivariable regression (see Chapter 19).

 ✓ A model with one or more predictors of a dichotomous categorical out-
come. This is univariate or multivariate logistic regression (see Chapter 20).

 ✓ A nonlinear model with one or more predictors of a continuous out-
come. This is univariate or multivariate nonlinear regression (see 
Chapter 21).

Many other combinations are possible. Most of the remainder of this book 
deals with the kinds of regression that you may expect to encounter in your 
research.



Chapter 18 

Getting Straight Talk on 
 Straight-Line Regression

In This Chapter
▶ Determining when to use straight-line regression
▶ Grasping the theory
▶ Doing straight-line regression and making sense of the output
▶ Watching for things that can go wrong
▶ Estimating the sample size you need

C 
hapter 17 talks about regression analyses in a general way. This chapter 
focuses on the simplest kind of regression analysis: straight-line regres-

sion. You can visualize it as “fitting” a straight line to the points in a scatter 
plot from a set of data involving just two variables. Those two variables are 
generally referred to as X and Y.

 ✓ The X variable is formally called the independent variable (or the predic-
tor or cause).

 ✓ The Y variable is called the dependent variable (or the outcome or effect).

 You may see straight-line regression referred to in books and articles by sev-
eral different names, including linear regression, simple linear regression, linear 
univariate regression, and linear bivariate regression. This abundance of refer-
ences can be confusing, so I always use the term straight-line regression.
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Knowing When to Use Straight-Line 
Regression

 Straight-line regression is the way to go when all of these things are true:

 ✓ You’re interested in the relationship between two (and only two) numer-
ical variables.

 ✓ You’ve made a scatter plot of the two variables and the data points 
seem to lie, more or less, along a straight line (as shown in Figures 18-1a 
and 18-1b). You shouldn’t try to fit a straight line to data that appears to 
lie along a curved line (as shown in Figures 18-1c and 18-1d).

 ✓ The data points appear to scatter randomly around the straight line 
over the entire range of the chart, with no extreme outliers.

 

Figure 18-1: 
Straight-line 

regression 
is appro-
priate for 

both strong 
and weak 

linear rela-
tionships 
(a and b), 

but not for 
nonlinear 

(curved-line) 
relationships 

(c and d).
 

 Illustration by Wiley, Composition Services Graphics
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Straight-line regression is the way to go when one or more of these things are 
true:

 ✓ You want to test whether there’s a significant association between the X 
and Y variables.

 ✓ You want to know the value of the slope or the intercept (or both).

 ✓ You want to be able to predict the value of Y for any value of X.

Understanding the Basics of  
Straight-Line Regression

 The formula of a straight line can be written like this: Y = a + bX. This formula 
breaks down this way:

 ✓ Y is the dependent variable (or outcome).

 ✓ X is the independent variable (or predictor).

 ✓ a is the intercept (the value of Y when X = 0).

 ✓ b is the slope (the amount Y changes when X increases by 1).

The best line (in the least-squares sense) through a set of data is the one 
that minimizes the sum of the squares (SSQ) of the residuals (the vertical 
 distances of each point from the fitted line), as shown in Figure 18-2.

 

Figure 18-2: 
On average, 

a good-
fitting line 

has smaller 
residuals 

than a bad-
fitting line.

 
 Illustration by Wiley, Composition Services Graphics
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For most types of curves, finding the best-fitting curve is a very complicated 
mathematical problem; the straight line is one of the very few kinds of lines 
for which you can calculate the least-squares parameters from explicit for-
mulas. If you’re interested (or if your professor says that you’re interested), 
here’s a general outline of how those formulas are derived.

For any set of data Xi and Yi (in which i is an index that identifies each obser-
vation in the set, as described in Chapter 2), SSQ can be calculated like this:

If you’re good at first-semester calculus, you can find the values of a and b 
that minimize SSQ by setting the partial derivatives of SSQ with respect to 
a and b equal to 0. If you stink at calculus, trust that this leads to these two 
simultaneous equations:

a(N) + b(ΣX) = (ΣY)

a(ΣX) + b(ΣX2) = (ΣXY)

where N is the number of observed data points.

These equations can be solved for a and b:

 See Chapter 2 if you don’t feel comfortable reading the mathematical nota-
tions or expressions in this section.

Running a Straight-Line Regression
 Never try to do regression calculations by hand (or on a calculator). You’ll 

go crazy trying to evaluate all those summations and other calculations, and 
you’ll almost certainly make a mistake somewhere in your calculations.

Fortunately, every major statistical software package (and most minor ones) 
can do straight-line regression. Excel has built-in functions for the slope and 
intercept of the least-squares straight line. You can find straight-line regres-
sion web pages (several are listed at StatPages.info), and you can down-
load apps to do this task on a smartphone or tablet. (See Chapter 4 for an 
introduction to statistical software.)

http://StatPages.info
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In the following sections, I list the basic steps for running a straight-line 
regression, complete with an example.

Taking a few basic steps
 The exact steps you take to run a straight-line regression depend on what soft-

ware you’re using, but here’s the general approach:

 1. Get your data into the proper form.

  Usually, the data consists of two columns of numbers, one representing the 
independent variable and the other representing the dependent variable.

 2. Tell the software which variable is the independent variable and 
which one is the dependent variable.

  Depending on the software, you may type the variable names or pick 
them from a menu or list in your file.

 3. If the software offers output options, tell it that you want these results:

	 •	Graphs	of	observed	and	calculated	values

	 •	Summaries	and	graphs	of	the	residuals

	 •	Regression	table

	 •	Goodness-of-fit	measures

 4. Press the Go button (or whatever it takes to start the calculations).

  You should get your answers in the blink of an eye.

Walking through an example
To see how to run and interpret the output of a simple straight-line regres-
sion, I use the following example throughout the rest of this chapter.

Consider how blood pressure (BP) is related to body weight. It may be rea-
sonable to suspect that people who weigh more have higher BP. If you test 
this hypothesis on people and find that there really is an association between 
weight and BP, you may want to quantify that relationship. Maybe you want to 
say that every extra kilogram of weight tends to be associated with a certain 
amount of increased BP. The following sections take you through the steps of 
gathering data, creating a scatter plot, and interpreting the results.

Gathering the data
Suppose that you get a group of 20 representative adults from some popula-
tion. Say you stand outside the college bookstore and recruit students as they 
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pass by. You weigh them and measure their BP. To keep your study simple, you 
consider just the systolic blood pressure. Table 18-1 shows some actual weight 
and BP data from 20 people. Weight is recorded in kilograms (kg), and BP is 
recorded in the strange-sounding units of millimeters of mercury (mmHg). For 
clarity, I omit that rather cumbersome notation when a sentence reads better 
without it and when I’m obviously talking about a BP value.

Table 18-1 Weight and Blood Pressure
Subject Body Weight (kg) Systolic BP (mmHg)
001 74.4 109
002 85.1 114
003 78.3 94
004 77.2 109
005 63.8 104
006 77.9 132
007 78.9 127
008 60.9 98
009 75.6 126
010 74.5 126
011 82.2 116
012 99.8 121
013 78.0 111
014 71.8 116
015 90.2 115
016 105.4 133
017 100.4 128
018 80.9 128
019 81.8 105
020 109.0 127

Creating a scatter plot
It’s usually hard to spot patterns and trends in a table like Table 18-1, but you 
get a clearer picture of what’s happening if you make a scatter plot of the 20 
subjects, with weight (the independent variable) on the X axis and systolic 
BP (the dependent variable) on the Y axis. See Figure 18-3.
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Figure 18-3:  
Blood 

pressure 
versus body 

weight.
 

 Illustration by Wiley, Composition Services Graphics

Examining the results
In Figure 18-3, you can see a possible pattern. There seems to be a tendency 
for the following:

 ✓ Low-weight people have low BP (represented by the points near the 
lower-left part of the graph).

 ✓ Higher-weight people have higher BP (represented by the points near 
the upper-right part of the graph).

There aren’t any really heavy people with really low BP; the lower-right part 
of the graph is pretty empty. But the agreement isn’t completely convincing. 
Several people in the 70- to 80-kilogram range have BPs over 125.

 A correlation analysis (described in Chapter 17) will tell you how strong the 
association is and let you decide whether or not it could be due solely to 
random fluctuations. A regression analysis will, in addition, give you a math-
ematical formula that expresses the relationship between the two variables 
(weight and BP, in this example).

Interpreting the Output of  
Straight-Line Regression

In the following sections, I take you through the printed and graphical output 
of a typical straight-line regression run. Its looks will vary depending on your 
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software (this output was generated by the R statistical software), but you 
should be able to find the following parts of the output:

 ✓ A simple statement of what you asked the program to do

 ✓ A summary of the residuals, including graphs that display the residuals 
and help you assess whether they’re normally distributed

 ✓ The regression table

 ✓ Measures of goodness-of-fit of the line to the data

Seeing what you told the program to do
In Figure 18-4, the first two lines produced by the statistical software say that 
you wanted to fit a simple formula: BP ~ Weight to your observed BP and 
weight values.

 

Figure 18-4: 
Typical 

regression 
output looks 

like this.
 

 Illustration by Wiley, Composition Services Graphics

 The tilde in an expression like Y ~ X is a widely used shorthand way of saying 
that you’re fitting a model in which Y depends only on X. Read a tilde aloud as 
depends only on or is predicted by or is a function of. So in Figure 18-4, the tilde 
means you’re fitting a model in which BP depends only on weight.

The actual equation of the straight line is BP = a + b × weight, but the a (inter-
cept) and b (slope) parameters have been left out of the model shown in 
Figure 18-4 for the sake of conciseness. This shorthand is particularly useful in 
Chapter 19, which deals with formulas that have lots of independent variables.
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Looking at residuals
Most regression software gives several measures of how the data points 
scatter above and below the fitted line. The “residuals” section in Figure 18-4 
provides information about how the observed data points scatter around the 
fitted line.

 The residual for a point is the vertical distance of that point from the fitted 
line. It’s calculated as Residual = Y – (a + b × X), where a and b are the inter-
cept and slope of the fitted straight line. The residuals for the sample data are 
shown in Figure 18-5.

 

Figure 18-5: 
Scattergram 
of BP versus 
weight, with 

the fitted 
straight 

line and the 
residuals of 
each point 

from the 
line.

 
 Illustration by Wiley, Composition Services Graphics

Summary statistics for the residuals
If you read about summarizing data in Chapter 8, you know the distribution 
of a set of numbers is often summarized by quoting the mean, standard devi-
ation, median, minimum, maximum, and quartiles. That’s exactly what you 
find in the “residuals” section of your software’s output. Here’s what you see 
in Figure 18-4:

 ✓ The Min and Max values are the two largest residuals (the two points 
that lie farthest away from the line). One data point actually lies about 
21 mmHg below the line, and one point lies about 17 above the line. (The 
sign of a residual is positive or negative, depending on whether the point 
lies above or below the fitted line, respectively.)
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 ✓ The first and third quartiles (denoted 1Q and 3Q, respectively) tell you 
that about a quarter of the points (that is, 5 of the 20 points) lie more than 
4.7 mmHg below the fitted line, a quarter of them lie more than 6.5 mmHg 
above the fitted line, and the remaining half of the points lie within those 
two quartiles.

 ✓ The Median value of –3.4 tells you that half of the residuals (that is, the 
residuals of 10 of the 20 points) are less than –3.4 and half are greater 
than –3.4 mmHg.

Note: The mean residual isn’t included in these summary numbers because 
the mean of the residuals is always exactly 0 for any kind of regression that 
includes an intercept term.

 The residual standard error, often called the root-mean-square (RMS) error in 
regression output, is a measure of how tightly or loosely the points scatter 
above or below the fitted line. You can think of it as the standard deviation (SD) 
of the residuals, although it’s computed in a slightly different way from the 
usual SD of a set of numbers: RMS uses N – 2 instead of N – 1 in the denomina-
tor of the SD formula. The R program shows the RMS value near the bottom of 
the output, but you can think of it as another summary statistic for residuals.

For this data, the residuals have a standard deviation of about 9.8 mmHg.

Graphs of the residuals
Most regression programs will produce several graphs of the residuals if you 
ask them to. You can use these graphs to assess whether the data meets the 
criteria for doing a least-squares straight-line regression. Figure 18-6 shows 
two of the more common types of residual graphs, commonly called “residu-
als versus fitted” and “normal Q-Q” graphs.

A residuals versus fitted graph has the values of the residuals (observed Y minus 
predicted Y) plotted along the Y axis and the predicted Y values from the fitted 
straight line plotted along the X axis. A normal Q-Q graph shows the standard-
ized residuals (residuals divided by the RMS value) along the Y axis and theoret-
ical quantiles along the X axis. Theoretical quantiles are what you’d expect the 
standardized residuals to be if they were exactly normally distributed.

 Together, the two kinds of graphs shown in Figure 18-6 give some insight into 
whether your data conforms to assumptions for straight-line regression:

 ✓ Your data must lie randomly above and below the line across the whole 
range of data.

 ✓ The average amount of scatter must be fairly constant across the whole 
range of data.

 ✓ The residuals should be approximately normally distributed.
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You’ll need some experience with residual graphs (maybe 10 or 20 years’ 
worth) before you can interpret them confidently, so don’t feel too discour-
aged if you can’t tell at a glance whether your data complies with the require-
ments for straight-line regression. Here’s how I interpret them (though other 
statisticians may disagree with me):

 ✓ The residuals versus fitted chart in Figure 18-6 indicates that points 
seem to lie equally above and below the fitted line, and that’s true 
whether you’re looking at the left, middle, or right part of the graph.

 ✓ Figure 18-6 also indicates that most of the points lie within ±10 mmHg 
of the line. But a lot of larger residuals for points appear to be where 
the BP is around 115 mmHg. This seems a little suspicious, and I should 
probably look at my raw data and see whether there’s something 
unusual about these subjects.

 ✓ If the residuals are normally distributed, then in the normal Q-Q chart 
in Figure 18-6, the points should lie close to the dotted diagonal line and 
shouldn’t display any overall curved shape. These points seem to follow 
the dotted line pretty well, so I’m not concerned about lack of normality 
in the residuals.

Making your way through  
the regression table

 The table of regression coefficients is arguably the most important part of the 
output for any kind of regression; it’s probably where you look first and where 
you concentrate most of your attention. Nearly all straight-line statistics pro-
grams produce a table of regression coefficients that looks much like the one 
in Figure 18-4.
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For straight-line regression, the coefficients table has two rows that corre-
spond to the two parameters of the straight line:

 ✓ The intercept row: You may find this row labeled at the far left by the 
term Intercept or Constant.

 ✓ The slope row: This row may be labeled as Slope, but it’s more frequently 
labeled with the name of the independent variable (in this case, Wgt).

The table usually has about four columns (more or less, depending on the 
software). The names of the columns vary from one software package to 
another. The columns are discussed in the following sections.

The values of the coefficients (the intercept and the slope)
 The first column usually shows the values of the slope and intercept of 

the fitted straight line. The heading of this column in the table might be 
Coefficient, Estimate, or perhaps (more cryptically) the single letter B or C 
(in uppercase or lowercase), depending on the software.

The intercept is the predicted value of Y when X is equal to 0 and is expressed 
in the same units of measurement as the Y variable. The slope is the amount the 
predicted value of Y changes when X increases by exactly one unit of measure-
ment and is expressed in units equal to the units of Y divided by the units of X.

In the example shown in Figure 18-4, the estimated value of the intercept is 
76.8602 mmHg, and the estimated value of the slope is 0.4871 mmHg/kilogram.

 ✓ The intercept value of 76.9 mmHg means that a person who weighs 
0 kilograms should have a BP of about 77 mmHg. But nobody weighs 
0 kilograms! The intercept in this example (and in many straight-line 
relations in biology) has no physiological meaning at all, because 0 kilo-
grams is totally outside the range of possible human weights.

 ✓ The slope value of 0.4871 mmHg/kilogram does have a real-world mean-
ing. It means that every additional 1 kilogram of weight is associated 
with a 0.4871 mmHg increase in systolic BP. Or, playing around with the 
decimal points, every additional 10 kilograms of body weight is associ-
ated with almost a 5 mmHg BP increase.

The standard errors of the coefficients
The second column in the regression table usually has the standard errors 
of the estimated parameters (sometimes abbreviated SE, Std. Err., or some-
thing similar). I use SE for standard error in the rest of this chapter.

 Because your observed data always have random fluctuations, anything you 
calculate from your observed data also has random fluctuations (whether 
it’s a simple average or something more complicated, like a regression coeffi-
cient). The SE tells you how precisely you were able to estimate the parameter 
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from your data, which is very important if you plan to use the value of the 
slope (or the intercept) in some subsequent calculation. (See Chapter 11 to 
read how random fluctuations in numbers propagate through any calculations 
you may perform with those numbers.)

Keep these things in mind about SE:

 ✓ Standard errors always have the same units as the coefficients them-
selves. In the example shown in Figure 18-4, the SE of the intercept has 
units of mmHg, and the SE of the slope has units of mmHg/kg.

 ✓ Round off the estimated values. Quoting a lot of meaningless digits 
when you report your results is pointless. In this example, the SE of the 
intercept is about 14.7, so you can say that the estimate of the intercept 
in this regression is about 77 ± 15 mmHg. In the same way, you can say 
that the estimated slope is 0.49 ± 0.18 mmHg/kg.

  When quoting regression coefficients in professional publications, you 
may include the SE like this: “The predicted increase in systolic blood 
pressure with weight (±1 SE) was 0.49 ± 0.18 mmHg/kg.”

If you have the SE, you can easily calculate a confidence interval (CI) around 
the estimated parameter. (See Chapter 10 for more info.) To a very good 
approximation, the 95 percent confidence limits, which mark the low and 
high ends of the confidence interval around a coefficient, are given by these 
expressions:

Lower 95% CL = Coefficient – 2 × SE

Upper 95% CL = Coefficient + 2 × SE

More informally, these are written as 95% CI = coefficient ± 2 × SE.

So the 95-percent CI around the slope is calculated as 0.49 ± 2 × 0.176, which 
works out to 0.49 ± 0.35, which becomes 0.14 to 0.84 mmHg. If you submit 
a manuscript for publication, you may express the precision of the results 
in terms of CIs instead of SEs, like this: “The predicted increase in systolic 
blood pressure as a function of body weight was 0.49 mmHg/kg (95% CI: 
0.14 – 0.84).” Of course, you should always follow the guidelines specified by 
the journal you’re writing for.

 To be more precise, multiply the SE by the critical two-sided Student t value 
for the confidence level you want and the appropriate number of degrees of 
freedom (which, for N data points, is equal to N – 2). You can estimate critical 
t values from this book’s online Cheat Sheet at www.dummies.com/ 
cheatsheet/biostatistics or get them from more extensive tables, sta-
tistical software, or web pages. For a 95 percent CI and a set of 30 data points 
(28 degrees of freedom), the critical t value is 2.0484. The approximate value 
of 2 is fine for most practical work; you probably won’t have to look up critical 
t values unless you have fewer than 20 data points.

http://www.dummies.com/cheatsheet/biostatistics
http://www.dummies.com/cheatsheet/biostatistics
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The Student t value
In many statistical programs, the third column in a regression table shows 
the ratio of the coefficient divided by its standard error. This column can go 
by different names, but it’s most commonly referred to as t or t value. You 
can think of this column as an intermediate quantity in the calculation of 
what you’re really interested in: the p value for the coefficient.

 The t values appearing in the regression table are not the “critical t values” 
that you use to construct confidence intervals, as described earlier.

The p value
The next (and usually last) column of the regression table contains the p 
value, which indicates whether the regression coefficient is significantly 
different from 0. Depending on your software, this column may be called p 
value, p, Signif, or Pr(>|t|), as shown in Figure 18-4.

Note: In Chapter 19, I explain how to interpret this peculiar notation, but just 
keep in mind that it’s only another way of designating the column that holds 
the p values.

In Figure 18-4, the p value for the intercept is shown as 5.49e – 05, which is 
equal to 0.0000549 (see the description of scientific notation in Chapter 2). 
This value is much less than 0.05, so the intercept is significantly different 
from zero. But recall that in this example the intercept doesn’t have any real-
world importance (it’s the expected BP for a person who doesn’t weigh any-
thing), so you probably don’t care whether it’s different from zero or not.

But the p value for the slope is very important — if it’s less than 0.05, it 
means that the slope of the fitted straight line is significantly different from 
zero. In turn, that means that the X and Y variables are significantly associ-
ated with each other. A p value greater than 0.05 indicates that the true slope 
may be equal to zero, so there’s no conclusive evidence for a significant asso-
ciation between X and Y. In Figure 18-4, the p value for the slope is 0.0127, 
which means that the slope is significantly different from zero, and this tells 
you that body weight is significantly associated with systolic BP.

 If you want to test for a significant correlation between two variables, simply 
look at the p value for the slope of the least-squares straight line. If it’s less 
than 0.05, then the X and Y variables are significantly correlated. The p value 
for the significance of the slope in a straight-line regression is always exactly 
the same as the p value for the correlation test of whether r is significantly dif-
ferent from zero, as described in Chapter 17.
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Wrapping up with measures  
of goodness-of-fit
The last few lines of output in Figure 18-4 contain several indicators of how 
well a straight line represents the data. The following sections describe this 
part of the output.

The correlation coefficient
Most straight-line regression programs provide the classic Pearson r correla-
tion coefficient between X and Y (see Chapter 17 for details). But the program 
may give you the correlation coefficient in a roundabout way: as r2 rather 
than r itself. The software I use for this example shows r2 on the line that 
begins with “Multiple R-squared: 0.2984.” Just get out your calculator and 
take the square root of 0.2984 to get 0.546 for Pearson r.

 R squared is always positive — the square of anything is always positive — 
but the correlation coefficient can be positive or negative, depending on 
whether the fitted line slopes upward or downward. If the fitted line slopes 
downward, make your r value negative.

Why did the program give you R squared instead of r in the first place? It’s 
because R squared is a useful number in its own right. It’s sometimes called 
the coefficient of determination, and it tells you what percent of the total vari-
ability in the Y variable can be explained by the fitted line.

 ✓ An R-squared value of 1 means that the points lie exactly on the fitted 
line, with no scatter at all.

 ✓ An R-squared value of 0 means that your data points are all over the 
place, with no tendency at all for the X and Y variables to be associated.

 ✓ An R-squared value of 0.3 (as in this example) means that 30 percent of 
the variance in the dependent variable is explainable by the straight-line 
model.

Note: I talk about the adjusted R-squared value in Chapter 19 when I explain 
multiple regression. For now, you can just ignore it.

The F statistic
The last line of the sample output addresses this question: Is the straight-line 
model any good at all? How much better is the straight-line model (which has 
an intercept and a predictor) compared to the null model?
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 The null model is a model that contains only a single parameter representing a 
constant term (such as an intercept), with no predictor variables at all.

If the p value associated with the F statistic is less than 0.05, then adding the 
predictor variable to the model makes it significantly better at predicting BPs.

For this example, the p value is 0.013, indicating that knowing a person’s 
weight makes you significantly better at predicting that person’s BP than not 
knowing the weight (and therefore having to quote the same overall mean BP 
value from your data [117 mmHg] as your guess every time).

Scientific fortune-telling with  
the prediction formula
As I describe in Chapter 17, one reason for doing regression analysis is to 
develop a prediction formula (or, if you want to sound fancy, a predictive 
model) that lets you guess the value of the dependent variable if you know 
the values of the independent variables.

 Some statistics programs show the actual equation of the best-fitting straight 
line. If yours doesn’t, don’t worry. Just substitute the coefficients of the inter-
cept and slope for a and b in the straight-line equation: Y = a + bX.

With the output shown in Figure 18-4, where the intercept (a) is 76.9 and the 
slope (b) is 0.487, you can write the equation of the fitted straight line like 
this: BP = 76.9 + 0.487 Weight.

Then you can use this equation to predict someone’s BP if you know his 
weight. So, if a person weighs 100 kilograms, you can guess that that person’s 
BP may be about 76.9 + 100 × 0.487, which is 76.9 + 48.7, or about 125.6 mmHg. 
Your guess won’t be exactly on the nose, but it will probably be better than if 
you didn’t know that BP increases with increasing weight.

How far off may your guess be? The residual standard error provides a yard-
stick of your guessing prowess. As I explain in the earlier section “Summary 
statistics for the residuals,” the residual standard error indicates how much 
the individual points tend to scatter above and below the fitted line. For the 
BP example, this number is ±9.8, so you can expect your prediction to be 
within about ±10 mmHg most of the time (about 68 percent of the time if the 
residuals are truly normally distributed with a standard deviation of ±10) and 
within ±20 mmHg about 95 percent of the time.
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Recognizing What Can Go Wrong  
with Straight-Line Regression

Fitting a straight line to a set of data is a pretty simple task for any piece of 
software, but you still have to be careful. A computer program happily does 
whatever you tell it to, even if it’s something you shouldn’t do.

 People frequently slip up on the following things when doing straight-line 
regression:

 ✓ Fitting a straight line to curved data: Examining the pattern of residuals in 
the residuals versus fitted chart in Figure 18-5 can alert you to this problem.

 ✓ Ignoring outliers in the data: Outliers can mess up all the classical statisti-
cal analyses, and regression is no exception. One or two data points that 
are way off the main trend of the points will tend to drag the fitted line away 
from the other points. That’s because the strength with which each point 
tugs at the line is proportionate to the square of its distance from the line.

  Always look at a scatter plot of your data to make sure outliers aren’t 
present. Examine the residuals to make sure they seem to be distributed 
normally above and below the fitted line.

Figuring Out the Sample Size You Need
To figure out how many data points you need for a regression analysis, first 
ask yourself why you’re doing the regression in the first place.

 ✓ Do you want to show that the two variables are significantly associ-
ated? Then you want to calculate the sample size required to achieve a 
certain statistical power for the significance test (see Chapter 3 for an 
introduction to statistical power).

 ✓ Do you want to estimate the value of the slope (or intercept) to within 
a certain margin of error? Then you want to calculate the sample size 
required to achieve a certain precision in your estimate.

Testing the significance of a slope is exactly equivalent to testing the signifi-
cance of a correlation coefficient, so the sample-size calculations are also the 
same for the two types of tests. If you haven’t already, check out Chapter 17, 
which has simple formulas for the number of subjects you need to test for 
any specified degree of correlation.
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If you’re doing the regression to estimate the value of a regression coefficient — 
for example, the slope of the straight line — then the calculations get more com-
plicated. The precision of the slope depends on several things:

 ✓ The number of data points: More data points give you greater preci-
sion. Standard errors vary inversely as the square root of the sample 
size. Or, the required sample size varies inversely as the square of the 
desired SE. So, if you quadruple the sample size, you cut the SE in half. 
This is a very important, and very generally applicable, principle.

 ✓ Tightness of the fit of the observed points to the line: The closer the 
data points hug the line, the more precisely you can estimate the regres-
sion coefficients. The effect is directly proportional — twice as much 
Y-scatter of the points produces twice as large a SE in the coefficients.

 ✓ How the data points are distributed across the range of the X variable: 
This effect is hard to quantify, but in general, having the data points 
spread out evenly over the entire range of X produces more precision 
than having most of them clustered near the middle of the range.

How, then, do you intelligently design a study to acquire data for a linear 
regression where you’re mainly interested in estimating a regression coeffi-
cient to within a certain precision? One practical approach is to first conduct 
a small pilot study of, say, 20 subjects and look at the SE of the regression 
coefficient. If you’re really lucky, the SE may be as small as you wanted, or 
even smaller — then you’re all done!

 But the SE probably isn’t small enough (unless you’re a lot luckier that I’ve 
ever been). That’s when you reach for the square-root law. Follow these steps 
to get the total sample size you need to get the precision you want:

 1. Divide the SE that you got from your pilot run by the SE you want 
your full study to achieve.

 2. Square the ratio.

 3. Multiply the square of the ratio by the sample size of your pilot study.

Say you want to estimate the slope to a precision (standard error) of ±5. If a 
pilot study of 20 subjects gives you a SE of ±8.4 units, then the ratio is 8.4/5 
(or 1.68). Squaring this ratio gives you 2.82, which tells you that to get an SE 
of 5, you need 2.82 × 20, or about 56 subjects. And of course, because you’ve 
already acquired the first 20 subjects for your pilot run — you took my advice, 
right? — you need only another 36 subjects to have a total of 56.

 This estimation is only approximate. But at least you have a ballpark idea of 
how big a sample you need to achieve the desired precision. 



Chapter 19

More of a Good Thing: 
Multiple Regression

In This Chapter
▶ Understanding what multiple regression is
▶ Preparing your data for a multiple regression and interpreting the output
▶ Understanding how synergy and collinearity affect regression analysis
▶ Estimating the number of subjects you need for a multiple regression analysis

C 
hapter 17 introduces the general concepts of correlation and regression, 
two related techniques for detecting and characterizing the relationship 

between two or more variables. Chapter 18 describes the simplest kind of 
regression — fitting a straight line to a set of data consisting of one independent 
variable (the predictor) and one dependent variable (the outcome). The model 
(the formula relating the predictor to the outcome) is of the form Y = a + bX, 
where Y is the outcome, X is the predictor, and a and b are parameters (also 
called regression coefficients). This kind of regression is usually the only one you 
encounter in an introductory statistics course, but it’s just the tip of the regres-
sion iceberg.

This chapter extends simple straight-line regression to more than one 
 predictor — to what’s called the ordinary multiple linear regression model 
(or multiple regression, to say it simply).

Understanding the Basics  
of Multiple Regression

In Chapter 18, I outline the derivation of the formulas for determining the 
parameters (slope and intercept) of a straight line so that the line comes as 
close as possible to all the data points. The term as close as possible, in the 
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least-squares sense, means that the sum of the squares of vertical distances 
of each point from the fitted line is smaller for the least-squares line than for 
any other line you could possibly draw.

The same idea can be extended to multiple regression models containing 
more than one predictor (and more than two parameters). For two predictor 
variables, you’re fitting a plane (a flat sheet) to a set of points in three dimen-
sions; for more than two predictors, you’re fitting a “hyperplane” to points in 
four-or-more-dimensional space. Hyperplanes in multidimensional space may 
sound mind-blowing, but the formulas are just simple algebraic extensions of 
the straight-line formulas.

 The most compact way to describe these formulas is by using matrix notation, 
but because you’ll never have to do the calculations yourself (thanks to the 
software packages that I describe in Chapter 4), I’ll spare you the pain of look-
ing at a bunch of matrix formulas. If you really want to see the formulas, you 
can find them in almost any statistics text or in the Wikipedia article on regres-
sion analysis: http://en.wikipedia.org/wiki/Regression_analysis.

In the following sections, I define some basic terms related to multiple regres-
sion and explain when you should use it.

Defining a few important terms
 Multiple regression is formally known as the ordinary multiple linear regression 

model. What a mouthful! The terms mean:

 ✓ Ordinary: The outcome variable is a continuous numerical variable 
whose random fluctuations are normally distributed (see Chapter 25 for 
more about normal distributions).

 ✓ Multiple: The model has more than two predictor variables.

 ✓ Linear: Each predictor variable is multiplied by a parameter, and these 
products are added together to give the predicted value of the outcome 
variable. You can also have one more parameter thrown in that isn’t 
multiplied by anything — it’s called the constant term or the Intercept. 
The following are some linear functions:

	 •	Y = a + bX (the simple straight-line model; X is the predictor vari-
able, Y is the outcome, and a and b are parameters)

	 •	Y = a + bX + cX2 + dX3 (the variables can be squared or cubed, but 
as long as they’re multiplied by a coefficient and added together, 
the function is still considered linear in the parameters)

	 •	Y = a + bX + cZ + dXZ (the XZ term, often written as X*Z, is called an 
interaction)

http://en.wikipedia.org/wiki/Regression_analysis
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 In textbooks and published articles, you may see regression models written in 
various ways:

 ✓ A collection of predictor variables may be designated by a subscripted 
variable and the corresponding coefficients by another subscripted vari-
able, like this: Y = b0 + b1X1 + b2X2.

 ✓ In practical research work, the variables are often given meaningful 
names, like Age, Gender, Height, Weight, SystolicBP, and so on.

 ✓ Linear models may be represented in a shorthand notation that shows 
only the variables, and not the parameters, like this:

  Y = X + Z + X * Z instead of Y = a + bX + cZ + dX * Z

  or Y = 0 + X + Z + X * Z to specify that the model has no intercept.

  And sometimes you’ll see a “~” instead of the “=”; read the “~” as “is a 
function of,” or “is predicted by.”

Knowing when to use multiple regression
Chapter 17 lists a number of reasons for doing regression analysis — testing 
for significant association, getting a compact representation of the data, 
making predictions and prognoses, performing mathematical operations on 
the data (finding the minimum, maximum, slope, or area of a curve), prepar-
ing calibration curves, testing theoretical models, and obtaining values of 
parameters that have physical or biological meaning. All these reasons apply 
to multiple regression.

Being aware of how the calculations work
Basically, fitting a linear multiple regression model involves creating a set of 
simultaneous equations, one for each parameter in the model. The equations 
involve the parameters from the model and the sums of various products of 
the dependent and independent variables, just as the simultaneous equations 
for the straight-line regression in Chapter 18 involve the slope and intercept 
of the straight line and the sums of X, Y, X2, and XY. You then solve these 
simultaneous equations to get the parameter values, just as you do for the 
straight line, except now you have more equations to solve. As part of this 
process you can also get the information you need to estimate the standard 
errors of the parameters, using a very clever application of the law of propa-
gation of errors (which I describe in Chapter 11).

 As the number of predictors increases, the computations get much more labo-
rious, but the computer is doing all the work, so who cares? Personal com-
puters can easily fit a model with 100 predictor variables to data from 10,000 
subjects in less than a second!
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Running Multiple Regression Software
With so many programs available that can do multiple regression, you’ll 
never have to run this procedure by hand, but you may need to do a little 
prep work on your data first. In the following sections, I explain how to 
handle categorical variables (if you have them) and make a few charts before 
you run a multiple regression.

Preparing categorical variables
The predictors in a multiple regression model can be either numerical or cat-
egorical. (For more info, flip to Chapter 7, which deals with different kinds of 
data.) The different categories that a variable can have are called levels. If a 
variable, like Gender, can have only two levels, like Male or Female, then it’s 
called a dichotomous or a binary categorical variable; if it can have more than 
two levels, I call it a multilevel variable.

Using categorical predictors in a multiple regression model is never a no-
brainer. You have to set things up the right way or you’ll get results that are 
either wrong or difficult to interpret properly. Here are two important things 
to be aware of.

Having enough cases in each level of each categorical variable
Before using a categorical variable in a multiple regression model, you (or, 
better yet, your computer) should tabulate how many cases are in each 
level. You should have at least two cases (and preferably more) in each 
level. Usually, the more evenly distributed the cases are spread across all 
the levels, the more precise and reliable the results will be. If a level doesn’t 
contain enough cases, the program may ignore that level, halt with a warning 
message, produce incorrect results, or crash.

So if you tally a Race variable and get: White: 73, Black: 35, Asian: 1, and 
Other: 10, you may want to create another variable in which Asian is lumped 
together with Other (which would then have 11 subjects). Or you may want 
to create a binary variable with the levels: White: 73 and Non-White: 46 
(or perhaps Black: 35 and Non-Black: 84, depending on the focus of your 
research).

Similarly, if your model has two categorical variables with an interaction term 
(like Gender + Race + Gender * Race), prepare a two-way cross-tabulation of 
Gender by Race first. You should have at least two subjects (and preferably 
many more) in each distinct combination of Gender and Race. (See Chapter 13 
for details about cross-tabulations.)
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Choosing the reference level wisely
For each categorical variable in a multiple regression model, the program 
considers one of the categories to be the reference level, and evaluates how 
each of the other levels affects the outcome, relative to that reference level. 
Some software lets you specify the reference level for a categorical variable; 
other software chooses it for you, sometimes in a way you may not like (like 
the level whose description comes first in the alphabet).

 Choose your reference level wisely, or the results won’t be very meaningful or 
useful.

 ✓ For a variable representing the presence or absence of some condition 
(like a risk factor), the reference level should represent the absence of 
the condition.

 ✓ For a variable representing treatment groups, the reference level should 
be the placebo, or the standard treatment, or whatever treatment you 
want to compare the other treatments to.

 ✓ For a variable representing a subject characteristic, like Gender or Race, 
the reference level is arbitrary. Sometimes the appropriate choice may 
be implicit in the objectives of the study (one group may be of special 
interest). If there’s no compelling reason to select one level over the 
others, you can choose the level with the most cases (which in the pre-
ceding Race example would be White, with 73 subjects).

Recoding categorical variables as numerical
If your statistics software lets you enter categorical variables as character 
data (like Gender coded as Male or Female), then you don’t have to read this 
section; you just have to make sure that, for each categorical variable, you 
have enough cases in each level, and that you’ve chosen the reference level 
wisely (and told the software what that level was). But if your regression 
program accepts only numerical variables as predictors, then you have to 
recode your categorical variables from descriptive text to numeric codes.

 Binary categorical predictors can be recoded to numbers very simply; just 
recode the reference level to 0, and the other level to 1.

For categorical variables with more than two levels, it’s more complicated. 
You can’t just code the different categories as different numbers, like 0, 1, 2, 3, 
and so on, because then the computer will think that it’s a numerical (quanti-
tative) variable, and give completely wrong answers. Instead, you have to split 
up the one multilevel variable into a set of binary dummy variables — one for 
each level in the original variable. For example, a variable called Race, with 
the levels White, Black, Asian, and Other, would be split up into four dummy 
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variables, which could be called WhiteRace, BlackRace, AsianRace, and 
OtherRace. Each dummy variable would be coded as 1 if the subject is of that 
race or as 0 if the subject isn’t of that race, as shown in Table 19-1.

Table 19-1 Coding a Multilevel Category into  
 a Set of Binary Dummy Variables
Subject Race WhiteRace BlackRace AsianRace OtherRace
1 White 1 0 0 0
2 Black 0 1 0 0
3 Asian 0 0 1 0
4 Other 0 0 0 1
5 Black 0 1 0 0

Then instead of including the variable Race in the model, you’d include the 
dummy variables for all levels of Race except the reference level. So if the 
reference level for Race was White, you’d include BlackRace, AsianRace, and 
OtherRace into the regression, but would not include WhiteRace.

 Leave the reference-level dummy variable out of the regression.

Creating scatter plots before you jump 
into your multiple regression
One common mistake many researchers make is immediately running a 
regression (or some other statistical analysis) before taking a look at their 
data. As soon as you put your data into a computer file, you should run cer-
tain error-checks and generate summaries and histograms for each variable 
to assess the way the values of the variables are distributed, as I describe in 
Chapters 8 and 9. And if you plan to analyze your data by multiple regression, 
you also should do some other things first. Namely, you should chart the 
relationship between each predictor variable and the outcome variable, and 
also the relationships between the predictor variables themselves.

Table 19-2 shows a small data file that I use throughout the remainder of this 
chapter. It contains the age, weight, and systolic blood pressure of 16 sub-
jects from a small clinical study. You might be interested in whether systolic 
blood pressure is associated with age or body weight (or both). Research 
questions involving the association between numerical variables are often 
handled by regression methods.
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Table 19-2 Sample Age, Weight, and Blood Pressure  
 Data for a Multiple Regression Analysis
Subject Number Age (years) Weight (kg) Systolic BP (mm Hg)
1 60 58 117
2 61 90 120
3 74 96 145
4 57 72 129
5 63 62 132
6 68 79 130
7 66 69 110
8 77 96 163
9 63 96 136
10 54 54 115
11 63 67 118
12 76 99 132
13 60 74 111
14 61 73 112
15 65 85 147
16 79 80 138

If you’re planning to run a regression model like this: SystolicBP ~ Age + 
Weight (in the shorthand notation described in the earlier section “Defining 
a few important terms”), you should first prepare several scatter charts: one 
of SystolicBP (outcome) versus Age (predictor), one of SystolicBP versus 
Weight (predictor), and one of Age versus Weight. For regression models 
involving many predictors, that can be a lot of scatter charts, but fortunately 
many statistics programs can automatically prepare a set of small “thumb-
nail” scatter charts for all possible pairings between a set of variables, 
arranged in a matrix like Figure 19-1.

These charts can give you an idea of what variables are associated with what 
others, how strongly they’re associated, and whether your data has outliers. 
The scatter charts in Figure 19-1 indicate that there are no extreme outliers in 
the data. Each scatter chart also shows some degree of positive correlation 
(as described in Chapter 17). In fact, referring to Figure 17-1, you may guess 
that the charts in Figure 19-1 correspond to correlation coefficients between 
0.5 and 0.8. You can have your software calculate correlation coefficients 
(r values) between each pair of variables, and you’d get values of r = 0.654 
for Age versus Weight, r = 0.661 for Age versus SystolicBP, and r = 0.646 for 
Weight versus SystolicBP.
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Figure 19-1: 
A scatter-

chart matrix 
for a set of 

variables 
prior to 

multiple 
regression.

 
 Illustration by Wiley, Composition Services Graphics

Taking a few steps with your software
 The exact steps you take to run a multiple regression depend on your soft-

ware, but here’s the general approach:

 1. Assemble your data into a file with one row per subject and one 
column for each variable you want in the model.

 2. Tell the software which variable is the outcome and which are the 
predictors.

 3. If the software lets you, specify certain optional output — graphs, sum-
maries of the residuals (observed minus predicted outcome values), 
and other useful results.

  Some programs, like SPSS (see Chapter 4), may offer to create new vari-
ables in the data file for the predicted outcome or the residuals.

 4. Press the Go button (or whatever it takes to start the calculations).

  You should see your answers almost instantly.

Interpreting the Output of  
a Multiple Regression

The output from a multiple regression run is usually laid out much like the 
output from the simple straight-line regression run in Chapter 18.



259 Chapter 19: More of a Good Thing: Multiple Regression

Examining typical output  
from most programs
Figure 19-2 shows the output from a multiple regression run on the data in 
Table 19-2, using the R statistical software that I describe in Chapter 4. (Other 
software would produce generally similar output, but arranged and formatted 
differently.)

 

Figure 19-2: 
Output from 

a multiple 
regression 

on the 
data from 

Table 19-2.
 

 Illustration by Wiley, Composition Services Graphics

 The components of the output are

 ✓ A description of the model to be fitted: In Figure 19-2, this description is 
SystolicBP ~ Age + Weight.

 ✓ A summary of the residuals (observed minus predicted values of the out-
come variable): For this example, the Max and Min Residuals indicate 
that one observed systolic BP value was 17.8 mmHg greater than pre-
dicted by the model, and one was 15.4 mmHg smaller than predicted.

 ✓ The regression table, or coefficients table, with a row for each parameter 
in the model, and columns for the following:

	 •	The	estimated	value of the parameter, which tells you how much 
the outcome variable changes when the corresponding variable 
increases by exactly 1.0 units, holding all the other variables con-
stant. For example, the model predicts that every additional year 
of age increases systolic BP by 0.84 mmHg, holding weight constant 
(as in a group of people who all weigh the same).
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	 •	The	standard error (precision) of that estimate. So the estimate of 
the Age coefficient (0.84 mmHg per year) is uncertain by about 
± 0.52 mmHg per year.

	 •	The	t value (value of the parameter divided by its SE). For Age, the 
t value is 0.8446/0.5163, or 1.636.

	 •	The	p value, designated “Pr(>|t|)” in this output, indicating whether 
the parameter is significantly different from zero. If p < 0.05, then the 
predictor variable is significantly associated with the outcome after 
compensating for the effects of all the other predictors in the model. 
In this example, neither the Age coefficient nor the Weight coeffi-
cient is significantly different from zero.

 ✓ Several numbers that describe the overall ability of the model to fit the data:

	 •	The	residual standard error, which, in this example, indicates that 
the observed-minus-predicted residuals have a standard deviation 
of 11.23 mmHg.

	 •	The	multiple R-squared is the square of an overall correlation coef-
ficient for the multivariate fit.

	 •	The	F statistic and associated p value indicate whether the model 
predicts the outcome significantly better than a null model, which 
has only the intercept term and no predictor variables at all. The 
highly significant p value (0.0088) indicates that age and weight 
together predict SystolicBP better than the null model.

Checking out optional output available 
from some programs
Depending on your software, you may also be able to get several other useful 
results from the regression:

 ✓ Predicted values for the dependent variable (one value for each sub-
ject), either as a listing or as a new variable placed into your data file.

 ✓ Residuals (observed minus predicted value, for each subject), either as 
a listing or as a new variable placed into your data file.

 ✓ The parameter error-correlations matrix, which is important if two 
parameters from the same regression run will be used to calculate some 
other quantity (this comes up frequently in pharmacokinetic analysis). The 
Propagation of Errors web page (http://StatPages.info/erpropgt.
html) asks for an error-correlation coefficient when calculating how mea-
surement errors propagate through an expression involving two variables.

http://StatPages.org/erpropgt.html
http://StatPages.org/erpropgt.html
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Deciding whether your data is suitable 
for regression analysis

 Before drawing conclusions from any statistical analysis, make sure that your 
data fulfilled assumptions on which that analysis was based. Two assumptions 
of ordinary linear regression include the following:

 ✓ The amount of variability in the residuals is fairly constant and not 
dependent on the value of the dependent variable.

 ✓ The residuals are approximately normally distributed.

Figure 19-3 shows two kinds of optional diagnostic graphs that help you 
determine whether these assumptions were met.

 ✓ Figure 19-3a provides a visual indication of variability of the residuals. 
The important thing is whether the points seem to scatter evenly above 
and below the line, and whether the amount of scatter seems to be the 
same at the left, middle, and right parts of the graph. That seems to be 
the case in this figure.

 ✓ Figure 19-3b provides a visual indication of the normality of the residu-
als. The important thing is whether the points appear to lie along the 
dotted line or are noticeably “curved.” In this figure, most of the points 
are reasonably consistent with a straight line, except perhaps in the 
lower-left part of the graph.

 

Figure 19-3: 
Diagnostic 

graphs  
from a 

regression.
 

 Illustration by Wiley, Composition Services Graphics
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Determining how well the  
model fits the data
Several numbers in the standard regression output relate to how closely the 
model fits your data:

 ✓ The residual standard error is the average scatter of the observed 
points from the fitted model (about ± 11 mm Hg in the example from 
Figure 19-2); the smaller that number is, the better.

 ✓ The larger the multiple R2 value is, the better the fit (it’s 0.44 in this 
example, indicating a moderately good fit).

 ✓ A significant F statistic indicates that the model predicts the outcome 
significantly better than the null model (p = 0.009 in this example).

Figure 19-4 shows another way to judge how well the model predicts the out-
come. It’s a graph of observed and predicted values of the outcome variable, 
with a superimposed identity line (Observed = Predicted). Your program may 
offer this “Observed versus Predicted” graph, or you can generate it from the 
observed and predicted values of the dependent variable. For a perfect pre-
diction model, the points would lie exactly on the identity line. The correla-
tion coefficient of these points is the multiple R value for the regression.

 

Figure 19-4: 
Observed 

versus 
predicted 
outcomes 

for the model 
SystolicBP 

~ Age + 
Weight, for 
the data in 
Table 19-2.

 
 Illustration by Wiley, Composition Services Graphics



263 Chapter 19: More of a Good Thing: Multiple Regression

Watching Out for Special Situations  
that Arise in Multiple Regression

Here I describe two topics that come up in multiple regression: interactions 
(both synergistic and anti-synergistic) and collinearity. Both relate to how 
the simultaneous behavior of two predictors can influence an outcome.

Synergy and anti-synergy
It sometimes happens that two predictor variables exert a synergistic effect 
on an outcome. That is, if both predictors were to increase by one unit, the 
outcome would change by more than simply the sum of the two increases 
you’d expect from changing each value individually by one unit. You can test 
for synergy between two predictors on an outcome by fitting a model that 
contains an interaction term (the product of those two variables):

SystolicBP = Age + Weight + Age * Weight

 In some software, if you include the Age*Weight term, you don’t have to 
include the separate Age and Weight terms; the program will do that for you.

If the interaction coefficient has a significant p value (p < 0.05), then the two 
variables have significant synergy between them. The sign of the coefficient 
indicates whether the synergy is positive or negative (anti-synergy).

Collinearity and the mystery of  
the disappearing significance
After you get into multiple regression analysis, it won’t be long before you 
encounter the puzzling/disturbing/exasperating phenomenon of “disap-
pearing significance.” It happens this way: First you run a bunch of simple 
straight-line regressions on each predictor separately versus the outcome, 
as a first look at your data. You may find that several predictors are each sig-
nificantly associated with the outcome. Then you run a multiple regression, 
using all the predictors, only to find (to your shock and dismay) that one or 
more (maybe even all) of the formerly significant variables have lost their 
significance!
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In the example from Table 19-2, there’s a significant association between Age 
and SystolicBP (p = 0.005), and between Weight and Systolic BP (p = 0.007). 
(You can run straight-line regressions, with the help of Chapter 18, on the 
data in that table if you don’t believe me.) But the multiple regression output 
in Figure 19-2 shows that neither Age nor Weight has regression coefficients 
that are significantly different from zero! What happened?

You’ve just been visited by the collinearity fairy. In the regression world, the 
term collinearity (also called multicollinearity) refers to a strong correlation 
between two or more of the predictor variables. And, sure enough, if you run 
a straight-line regression on Age versus Weight, you’ll find that they’re signifi-
cantly correlated with each other (p = 0.006).

The good news is that collinearity doesn’t make the model any worse at pre-
dicting outcomes. The bad news is that collinearity between two variables 
can make it hard to tell which variable was really influencing the outcome 
and which one was getting a free ride (was associated with the outcome only 
because it was associated with another variable that was really influencing 
the outcome). This problem isn’t trivial — it can be difficult, if not impos-
sible, to discern the true cause-and-effect relationships (if there are any) 
among a set of associated variables. The nearby sidebar “Model building” 
describes a technique that may be helpful.

 There’s a good discussion of multicollinearity (what it is, what its conse-
quences are, how to detect it, and what to do about it) in the Wikipedia article 
at http://en.wikipedia.org/wiki/Multicollinearity. 

Model building
One of the reasons (but not the only reason) 
for running a multiple regression analysis is to 
come up with a prediction formula for some out-
come variable, based on a set of available pre-
dictor variables. Ideally, you want this formula 
to be parsimonious — to have as few variables 
as possible but still make good predictions. So 
how do you select, from among a big bunch of 

predictor variables, the smallest subset needed 
to make a good prediction model? This is called 
the “model building” problem, which is a topic 
of active research by theoretical statisticians. 
See www.dummies.com/extras/bio 
statistics for an article that discusses 
model building.

http://en.wikipedia.org/wiki/Multicollinearity
http://www.dummies.com/extras/biostatistics
http://www.dummies.com/extras/biostatistics
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Figuring How Many Subjects You Need
 Every good experiment should have a large enough sample to ensure that you 

get a significant result in the test of your primary research hypothesis when 
the effect you’re testing in that hypothesis is large enough to be of clinical 
importance. So if the main hypothesis of your study is going to be tested by a 
multiple regression, you should do some kind of power calculation, specifically 
designed for multiple regressions, to determine the sample size you need.

Unfortunately, you probably won’t be able to do that. Programs are available 
for estimating sample-size requirements for multiple regression (both PS and 
GPower, described in Chapter 4, can handle some simple multivariate models), 
but they’re going to ask you for input that you almost certainly can’t provide.

If you plow through enough textbooks, you’ll find many rules of thumb for 
multiple regression, including the following:

 ✓ You need 4 subjects for every predictor variable in your model.

 ✓ You need 10 subjects for every predictor variable in your model.

 ✓ You need 100 subjects, plus one more for every predictor variable.

 ✓ 100 is adequate; 200 is good; 400 or more is great.

These rules don’t even remotely agree with each other, and they have no 
real theoretical justification, so they’re probably no better than the obvious 
advice that “more subjects give more statistical power.”

 For practical purposes, you can probably make do with a simple, sample-size 
estimate based on what you consider to be a clinically meaningful correlation 
coefficient between the most important predictor and the outcome. The simple 
formula from Chapter 26 — N = 8/r2, where N is the number of observations 
(subjects you need) and r is the clinically meaningful correlation coefficient — 
is probably as good as anything else.
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Chapter 20

A Yes-or-No Proposition: 
Logistic Regression 

In This Chapter
▶ Figuring out when to use logistic regression
▶ Getting a grip on the basics of logistic regression
▶ Running a logistic regression and making sense of the output
▶ Watching for things that can go wrong
▶ Estimating the sample size you need

Y 
ou can use logistic regression to analyze the relationship between one or 
more predictor variables (the X variables) and a categorical outcome 

variable (the Y variable). Typical categorical outcomes include the following:

 ✓ Lived or died

 ✓ Did or didn’t rain today

 ✓ Did or didn’t have a stroke

 ✓ Responded or didn’t respond to a treatment

 ✓ Did or did not vote for Joe Smith (in an exit poll)

In this chapter, I explain logistic regression — when to use it, the important con-
cepts, how to run it with software, and how to interpret the output. I also point 
out the pitfalls and show you how to determine the sample sizes you need.

Using Logistic Regression
 You can use logistic regression to do any (or all) of the following:

 ✓ Test whether the predictor and the outcome are significantly associated; 
for example, whether age or gender influenced a voter’s preference for a 
particular candidate.
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 ✓ Overcome the limitations of the 2-x-2 cross-tab method (described in 
Chapter 14), which can analyze only one predictor at a time that has 
to be a two-valued category, such as the presence or absence of a risk 
factor. With logistic regression, you can analyze any number of predic-
tor variables, each of which can be a numeric variable or a categorical 
variable having two or more categories.

 ✓ Quantify the extent of an association between the predictor and the out-
come (the amount by which a predictor influences the chance of getting 
the outcome); for example, how much a smoker’s chance of developing 
emphysema changes with each additional cigarette smoked per day.

 ✓ Develop a formula to predict the probability of getting the outcome from 
the values of the predictor variables. For example, you may want to 
predict the probability that a patient will benefit from a certain kind of 
therapy, based on the patient’s age, gender, severity of illness, and per-
haps even genetic makeup.

 ✓ Make yes or no predictions about the outcome that take into account 
the consequences of false-positive and false-negative predictions. For 
example, you can generate a tentative cancer diagnosis from a set of 
observations and lab results, using a formula that balances the different 
consequences of a false-positive versus a false-negative diagnosis.

 ✓ See how one predictor influences the outcome after adjusting for the influ-
ence of other variables; for example, how the number of minutes of exer-
cise per day influences the chance of having a heart attack, adjusting for 
the effects of age, gender, lipid levels, and other patient characteristics.

 ✓ Determine the value of a predictor that produces a certain probability of 
getting the outcome; for example, find the dose of a drug that produces 
a favorable clinical response in 80 percent of the patients treated with it 
(called the ED80, or 80 percent effective dose).

Understanding the Basics  
of Logistic Regression

In this section, I explain the concepts underlying logistic regression using a 
simple example involving data on mortality due to radiation exposure. This 
example illustrates why straight-line regression wouldn’t work and what you 
have to use instead.

Gathering and graphing your data
As in the other chapters in Part IV, here you see a simple real-world problem 
and its data, which I use throughout this chapter to illustrate what I’m talking  
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about. This example examines exposure to gamma-ray radiation, which is 
deadly in large-enough doses, looking only at the short-term lethality of acute 
large doses, not long-term health effects such as cancer or genetic damage.

In Table 20-1, “dose” is the radiation exposure expressed in units called 
Roentgen Equivalent Man (REM). Looking at the “Dose” and “Outcome” col-
umns, you can get a rough sense of how survival depends on dose. For low 
doses almost everyone lives, and for high doses almost everyone dies.

Table 20-1 Radiation Dose and Survival Data for 30 Subjects  
 (Sorted by Dose Level)
Dose in REMs Outcome 

(0 = Lived; 1 = Died)
Dose in REMS Outcome 

(0 = Lived; 1 = Died)
0 0 433 0
10 0 457 1
31 0 559 1
82 0 560 1
92 0 604 1
107 0 632 0
142 0 686 1
173 0 691 1
175 0 702 1
232 0 705 1
266 0 774 1
299 0 853 1
303 1 879 1
326 0 915 1
404 1 977 1

How can you analyze this data? First, graph the data: Plot the dose received 
on the X axis (because it’s the predictor). Plot the outcome (0 if the person 
lived; 1 if he died) on the Y axis. This plotting gives you the graph in 
Figure 20-1a. Because the outcome variable is binary (having only the values 
0 or 1), the points are restricted to two horizontal lines, making the graph dif-
ficult to interpret. You can get a better picture of the dose-lethality relation-
ship by grouping the doses into intervals (say, every 200 REM) and plotting 
the fraction of people in each interval who died, as shown in Figure 20-1b. 
Clearly, the chance of dying increases with increasing dose.
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Figure 20-1: 
Dose versus 

mortality, 
from Table 

20-1. Graph 
A shows 

individual 
subjects; 
Graph B 

shows them 
grouped.

 
 Illustration by Wiley, Composition Services Graphics

Fitting a function with an  
S shape to your data

 Don’t try to fit a straight line to binary-outcome data. The true dose-lethality 
curve is almost certainly not a straight line. For one thing, the fraction of sub-
jects dying can never be smaller than 0 nor larger than 1, but a straight line (or 
a parabola or any polynomial) very happily violates those limits for very low 
and very high doses. That can’t be right!

Instead, you need to fit a function that has an S shape — a formula giving Y 
as some expression involving X that, by its very nature, can never produce a 
Y value outside of the range from 0 to 1, no matter how large or small X may 
become.

 Of the many mathematical expressions that produce S-shaped graphs, the 
logistic function is ideally suited to this kind of data. In its simplest form, the 
logistic function is written like this: Y = 1/(1 + e–X), where e is the mathematical 
constant 2.718 (which is what e represents throughout the rest of this chap-
ter). Figure 20-2 shows the shape of the logistic function.

This function can be generalized (made more versatile for representing 
observed data) by adding two adjustable parameters (a and b) like this:  
Y = 1/(1 + e–(a + bX)).

Notice that the a+bX part looks just like the formula for a straight line (see 
Chapter 18); the rest of the logistic function is what bends that straight line 
into its characteristic S shape. The middle of the S (where Y = 0.5) always 
occurs when X = –b/a. The steepness of the curve in the middle region is 
determined by b, as follows:
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 ✓ If b is positive, the logistic function is an upward-sloping S-shaped 
curve, like the one shown in Figure 20-2.

 ✓ If b is 0, the logistic function is a horizontal straight line whose Y value 
is equal to 1/(1 + e-a), as shown in Figure 20-3.

 

Figure 20-2: 
The logistic 

function 
looks like 

this.
 

 Illustration by Wiley, Composition Services Graphics

 

Figure 20-3: 
When b is 0, 

the logistic 
function 

becomes a 
horizontal 

straight line.
 

 Illustration by Wiley, Composition Services Graphics
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 ✓ If b is negative, the curve is flipped upside down, as shown in 
Figure 20-4. Logistic curves don’t have to slope upward.

 ✓ If b is a very large number (positive or negative), the logistic curve is 
so steep that it looks like what mathematicians call a step function, as 
shown in Figure 20-5.

 

Figure 20-4: 
When b is 
negative, 

the logistic 
function 

slopes 
downward.

 
 Illustration by Wiley, Composition Services Graphics

 

Figure 20-5: 
When b is 
very large, 
the logistic 

function 
becomes 

a “step 
 function.”

 
 Illustration by Wiley, Composition Services Graphics
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 Because the logistic curve approaches the limits 0.0 and 1.0 for extreme 
values of the predictor(s), you should not use logistic regression in situations 
where the fraction of subjects having the outcome does not approach these 
two limits. Logistic regression is fine for the radiation example because no one 
dies from a radiation exposure of zero REMs, and everyone dies from an 
extremely large dose (like 10,000 REMs). But logistic regression wouldn’t be 
appropriate for analyzing the response of patients to a drug if very high doses 
of the drug don’t produce a 100% cure (or if some subjects spontaneously get 
better even if given no drug at all).

 Logistic regression fits the logistic model to your data by finding the values of 
a and b that make the logistic curve come as close as possible to all your plot-
ted points. With this fitted model, you can then predict the probability of the 
outcome event (in this example, dying). See the later section “Predicting prob-
abilities with the fitted logistic formula” for more details.

Getting into the nitty-gritty of logistic regression
You don’t need to know all the theoretical 
and computation details for logistic regres-
sion, because computers do all that work. You 
should have a general idea of what’s involved, 
though. The calculations are much more com-
plicated than those for ordinary straight-line or 
multivariate least-squares regression. In fact, 
it’s impossible to write down a set of formulas 
that give the logistic regression coefficients in 
terms of the observed X and Y values; you have 
to obtain them by a complicated iterative pro-
cedure that no sane human being would ever 
try to do by hand.

Logistic regression determines the values of the 
regression coefficients that are most consistent 
with the observed data, using what’s called the 
maximum likelihood criterion. The likelihood of 
any statistical model is the probability, based 
on the model, of getting what you actually 
observed. There’s a likelihood value for each 
case in the data set, and a total likelihood (L) 
for the entire data set. The likelihood value for 
each data point is just the predicted probability 
of getting the observed result. For subjects who 
died (refer to Table 20-1), the likelihood is the 
probability of dying (Y) predicted by the logistic 
formula. For subjects who lived, the likelihood 

is the predicted probability of living, which is 
(1 – Y). The total likelihood (L) for the whole set 
of subjects is the product of all the calculated 
likelihoods for each subject.

To find the values of the coefficients that 
maximize L, it is sufficient (and computation-
ally easier) to find the values that minimize 
the quantity –2 times the natural logarithm 
of L, which is sometimes designated as –2LL. 
Statisticians call –2LL the deviance — the 
closer the curve comes to the observed points, 
the smaller this deviance number will be. The 
actual numeric value of a deviance number for 
a logistic regression doesn’t mean much by 
itself, but the difference in deviance between 
two different models is very important.

The final step is to find the values of the coef-
ficients that will minimize the deviance of the 
observed Y values from the fitted logistic curve. 
This may sound like a hopelessly difficult task, 
but computer scientists have developed elegant 
and efficient ways to minimize a complicated 
function of several variables, and a logistic 
regression program uses one of these methods 
to get the coefficients.
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Handling multiple predictors  
in your logistic model
The data in Table 20-1 has only one predictor variable, but you may have 
several predictors of a yes or no outcome. For example, a person’s chance 
of dying from radiation exposure may depend not only on the radiation 
dose received, but also on age, gender, weight, general health, radiation 
wavelength, and the amount of time over which the radiation is received. 
In Chapter 19, I describe how the simple straight-line regression model can 
be generalized to handle multiple predictors. You can generalize the simple 
logistic formula to handle multiple predictors in the same way.

Suppose the outcome variable Y is dependent on three predictors, called X, 
V, and W. Then the multivariate logistic model looks like this:

Y = 1/(1 + e–(a + bX + cV + dW)).

Logistic regression finds the best values of the parameters a, b, c, and d so 
that for any particular set of values for X, V, and W, you can predict Y — the 
probability of getting a yes outcome.

Running a Logistic Regression  
with Software

 The logistic regression theory is difficult, and the calculations are complicated 
(see the earlier sidebar “Getting into the nitty-gritty of logistic regression” for 
details). However, the great news is that most general statistics programs (like 
those in Chapter 4) can run logistic regression, and it isn’t any more difficult 
than running a simple straight-line or multiple linear regression (see Chapters 
18 and 19). Here’s all you have to do:

 1. Make sure your data set has a column for the outcome variable and 
that this column has only two different values.

  You can code it as 1 or 0, according to whether the outcome is yes or no, 
or your software may let you record the data as yes or no (or as Lived or 
Died, or any other dichotomous classification), with the program doing the 
0 or 1 recoding behind the scenes. (Check out Table 20-1 for an example.)

 2. Make sure your data set has a column for each predictor variable and 
that these columns are in a format that your software accepts.
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  The predictors can be quantitative (such as age or weight; Table 20-1 
uses dose amount) or categorical (like gender or treatment group), 
just as with ordinary least-squares regression. See Chapter 19, where 
I describe how to set up categorical predictor variables.

 3. Tell your program which variables are the predictors and which vari-
able is the outcome.

  Depending on the software, you may do this by typing the variable 
names or by selecting the variables from a menu or list.

 4. Tell your program that you want as many of the following outputs as it 
can give you:

	 •	A	summary	of	information	about	the	variables

	 •	Measures	of	goodness-of-fit

	 •	A	table	of	regression	coefficients,	including	odds	ratios	and	their	
confidence intervals

	 •	Predicted	probabilities	of	getting	the	outcome	(which,	ideally,	the	
program puts into a new column that it creates in the database)

	 •	If	there’s	only	one	predictor,	a	graph	of	predicted	probabilities	
versus the value of the predictor (this will be a graph of the fitted 
logistic curve)

	 •	A	classification	table	of	observed	outcomes	versus	predicted	
 outcomes

	 •	Measures	of	prediction	accuracy	(overall	accuracy,	sensitivity,	and	
specificity)

	 •	An	ROC	curve

 5. Press the Go button and stand back!

  The computer does all the work and presents you with the answers.

Interpreting the Output  
of Logistic Regression

Figure 20-6 shows the kind of printed output that a typical logistic regression 
program may produce from the data in Table 20-1. The following sections 
explain the output’s different sections.
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Seeing summary information  
about the variables
The program may provide some summary descriptive information about the 
variables: means and standard deviations of predictors that are numerical 
variables, and a count of how many subjects did or did not have the outcome 
event. In the “Descriptives” section of Figure 20-6, you see that 15 of the 30 
subjects lived and 15 died. Some programs may also provide the mean and 
standard deviation of each numerical predictor variable.

 

Figure 20-6: 
Typical 

output from 
a logistic 

regression.
 

 Illustration by Wiley, Composition Services Graphics

Assessing the adequacy of the model
The program indicates how well the fitted function represents the data 
 (goodness-of-fit), and it may provide several such measures, most of which 
have an associated p value. (A p value is the probability that random 



277 Chapter 20: A Yes-or-No Proposition: Logistic Regression

 fluctuations alone, in the absence of any real effect in the population, 
could’ve produced an observed effect at least as large as what you observed 
in your sample; see Chapter 3 for a refresher.) It’s easy to misinterpret these 
because they measure subtly different types of goodness-of-fit.

You may see the following, depending on your software:

 ✓ A p value associated with the drop-in deviance (–2LL) between the 
null model (intercept-only) and the final model (with the predictor 
variables): (See the earlier sidebar “Getting into the nitty-gritty of logis-
tic regression” for the definition of –2LL.) If this p value is less than 0.05, 
it indicates that adding the predictor variables to the null model signifi-
cantly improves its ability to predict the outcome. In Figure 20-6, the 
p value for the reduction in deviance is less than 0.0001, which means 
that adding radiation dose to the model makes it significantly better at 
predicting an individual person’s chance of dying than the null model 
(which, in essence, always predicts a death probability equal to the 
observed fraction of subjects who died).

 ✓ A p value from the Hosmer-Lemeshow (H-L) test: If this p value is less 
than 0.05, your data isn’t consistent with the logistic function’s S shape. 
Perhaps it doesn’t approach a 100 percent response rate for large doses. 
(Most treatments aren’t 100 percent effective, even at large doses.) 
Perhaps the response rises with increasing dose up to some optimal 
dose and then declines with further dose increases. In Figure 20-6, the 
H-L p value is 0.842, which means that the data is consistent with the 
shape of a logistic curve.

 ✓ One or more pseudo–R-square values: Pseudo–R-square values indicate 
how much of the total variability in the outcomes is explainable by 
the fitted model, analogous to how R-square is interpreted in ordinary 
least-squares regression, as described in Chapter 19. In Figure 20-6, two 
such values are provided: the Cox/Snell and Nagelkerke R-square. These 
values (0.577 and 0.770, respectively) indicate that a majority of the vari-
ability in the outcomes is explainable by the logistic model.

 ✓ Akaike’s Information Criterion (AIC): AIC is related to the final model 
deviance, adjusted for how many predictor variables are in the model. 
Like deviance, AIC is a “smaller is better” number. It’s very useful for 
choosing between different models (for example, deciding which predic-
tors to include in a model). For an excellent description of the AIC, and 
its use in choosing between competing models, go to www.graphpad.
com/guides/prism/6/curve-fitting, click on “Comparing fits of 
nonlinear models” in the lefthand menu, and then choose “How the AIC 
computations work.”

http://www.graphpad.com/guides/prism/6/curve-fitting/
http://www.graphpad.com/guides/prism/6/curve-fitting/
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Checking out the table of  
regression  coefficients

 The most important output from a logistic regression program is the table of 
regression coefficients, which looks much like the coefficients table from ordi-
nary straight-line or multivariate least-squares regression (see Chapters 18 
and 19).

 ✓ Every predictor variable appears on a separate row.

 ✓ There’s one row for the constant (or intercept) term.

 ✓ The first column is almost always the fitted value of the regression 
 coefficient.

 ✓ The second column is usually the standard error (SE) of the coefficient.

 ✓ A p value column (perhaps called Sig or Signif or Pr(>|z|)) indicates 
whether the coefficient is significantly different from 0.

For each predictor variable, the logistic regression should also provide the 
odds ratio and its 95 percent confidence interval, either as additional col-
umns in the coefficients table or as a separate table. You can see these items 
in Figure 20-6.

 But don’t worry if the program doesn’t provide them: You can calculate them 
simply by exponentiating the corresponding coefficients and their confidence 
limits. The confidence limits for the coefficients are easily calculated by 
adding or subtracting 1.96 times the standard error from the coefficient. The 
formulas follow:

Odds ratio = eCoefficient

Lower 95 percent confidence limit = eCoefficient –- 1.96 × SE

Upper 95 percent confidence limit = eCoefficient + 1.96 × SE

Predicting probabilities with  
the fitted logistic formula

 The program may show you the fitted logistic formula. In Figure 20-6, the for-
mula is shown as:

Prob(Death) = 1/(1 + Exp(–(–4.828 + 0.01146 * Dose)))
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If the software doesn’t provide the formula, just substitute the regression 
coefficients from the regression table into the logistic formula.

The final model produced by the logistic regression program from the data in 
Table 20-1 and the resulting logistic curve are shown in Figure 20-7.

With the fitted logistic formula, you can predict the probability of having 
the outcome if you know the value of the predictor variable. For example, if 
a subject receives 500 REM of radiation, the probability of death is given by 
this formula: Probability of Death = 1/(1 + e–(–4.828 + 0.01146 × 500)), which equals 
0.71. A person who receives 500 REM of radiation has about a 71 percent 
chance of dying shortly thereafter.

You can also calculate some special points on a logistic curve, as you find out 
in the following sections.

 

Figure 20-7: 
The logis-
tic curve 

that fits 
the dose- 
mortality 

data from 
Table 20-1.

 
 Illustration by Wiley, Composition Services Graphics

 Be careful with your algebra when evaluating these formulas! The a coefficient 
in a logistic regression is often a negative number, and subtracting a negative 
number is like adding its absolute value.
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Calculating effective doses on a logistic curve
When logistic regression is applied to dose-response data, the dose (X) that 
produces a 50 percent response (Y = 0.5) is called the median effective dose 
(ED50). Similarly, the X value that makes Y = 0.8 is called the 80 percent effec-
tive dose (ED80), and so on. It’s pretty easy to calculate these special dose 
levels from the a and b parameters of the fitted logistic model in the preced-
ing section.

If you remember high-school algebra, you can solve the logistic formula Y = 1/
(1 + e–(a + bX)) for X as a function of Y; if you don’t remember, here’s the answer:

where log stands for natural logarithm. Substituting 0.5 for Y in the preceding 
equation gives the ED50 as simply –a/b. Similarly, substituting 0.8 for Y gives 
the ED80 as .

So if, for example, a drug produces a therapeutic response that’s represented 
by a logistic model with a = –3.45 and b = 0.0204 dL/mg, the 80 percent effec-
tive dose (ED80) would be equal to (1.39 – (–3.45))/0.0234, which works out to 
about 207 mg/dL.

Calculating lethal doses on a logistic curve
When death is the outcome event, the corresponding terms are median 
lethal dose (LD50), 80 percent lethal dose (LD80), and so on. So, for the data in 
Table 20-1, a = –4.83 and b = 0.0115, so –a/b = –(–4.83)/0.0115, which works 
out to 420 REMs. Someone who receives a 420 REMs dose of radiation has a 
50-50 chance of dying shortly thereafter.

Making yes or no predictions
A logistic model, properly fitted to a set of data, lets you calculate the pre-
dicted probability of having the outcome. But sometimes you’d rather make a 
yes or no prediction instead of quoting a probability. You can do this by com-
paring the calculated probability of getting a yes outcome to some arbitrary 
cut value (such as 0.5) that separates a yes prediction from a no prediction. 
That is, you can say, “If the predicted probability for a subject is greater than 
0.5, I’ll predict yes; otherwise, I’ll predict no.”

In the following sections, I talk about yes or no predictions — what they can 
tell you about the predicting ability of the logistic model and how you can 
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select the cut value that gives you the best tradeoff between wrongly predict-
ing yes and wrongly predicting no.

Measuring accuracy, sensitivity, and  
specificity with classification tables
The logistic regression program provides several goodness-of-fit outputs 
(described earlier in this chapter), but these outputs may not be very easy to 
interpret. One other indicator, which is very intuitive, is the extent to which 
your yes or no predictions match the actual outcomes. You can cross-tabulate 
the predicted and observed outcomes into a fourfold classification table. Most 
statistical software can do all of this for you; it’s often as simple as selecting a 
check box to indicate that you want the program to generate a classification 
table based on some particular cut value. Most software assumes a cut value 
of 0.5 unless you tell it to use some other value. Figure 20-8 shows the classifi-
cation table for the radiation example, using 0.5 as the cut value.

 

Figure 20-8: 
A classifica-
tion table of 

observed 
versus 

predicted 
outcomes 

from 
radiation 

exposure, 
using a cut 
value of 0.5 

predicted 
probability.

  

Illustration by Wiley, Composition Services Graphics

From the classification table, you can calculate several useful measures 
of the model’s predicting ability for any specified cut value. (I define and 
describe these measures in more detail in Chapter 14.)

 ✓ Overall accuracy: Predicting correctly. The upper-left and lower-right 
cells correspond to correct predictions. Of the 30 subjects in the data 
set from Table 20-1, the logistic model predicted correctly (13 + 13)/30, 
or about 87 percent of the time; the model would make a wrong predic-
tion only about 13 percent of the time.
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 ✓ Sensitivity: Predicting a yes outcome when the actual outcome is yes. The 
logistic model predicted 13 of the 15 observed deaths (the upper-left box 
of Figure 20-8), so the sensitivity is 13/15, or about 87 percent; the model 
would make a false-negative prediction only about 13 percent of the time.

 ✓ Specificity: Predicting a no outcome when the actual outcome is no. 
The logistic model predicted survival in 13 of the 15 observed survivors 
(the lower-right box of Figure 20-8), so the specificity is 13/15, or about 
87 percent; the model would make a false-positive prediction only about 
13 percent of the time.

Sensitivity and specificity are especially relevant to screening tests for dis-
eases. An ideal test would have 100 percent sensitivity and 100 percent speci-
ficity (and, therefore, 100 percent overall accuracy). But no test meets this 
ideal in the real world.

 By judiciously choosing the cut-point for converting a probability into a yes 
or no decision, you can often achieve high sensitivity or high specificity, but 
not both simultaneously. Depending on the test and on what happens if it pro-
duces a false-positive or false-negative result, you have to consider whether 
high sensitivity or high specificity is more important.

For example, consider screening tests for two different diseases: colon 
cancer and prostate cancer.

 ✓ A false-positive result from a colon cancer screening test may induce a 
lot of anxiety for a while, until a follow-up colonoscopy reveals that no 
cancer is present. But a false-negative result can give an unwarranted 
sense of security that may cause other symptoms to go ignored until the 
cancer has progressed to an incurable stage.

 ✓ A false-positive result from a prostate cancer screening test may result 
in an unnecessary prostatectomy, an operation with many serious side 
effects. A false-negative result can cause prostate cancer to go untreated, 
but in most instances (especially in older men), prostate cancer is slow 
growing and usually not the ultimate cause of death. (It has been said 
that many men die with prostate cancer, but relatively few die from it.)

Some people may say that high sensitivity is more important than high speci-
ficity for a colon cancer test, while the reverse is true for a prostate cancer 
test. But other people may disagree. And nobody is likely to agree on just how 
to best balance the conflicting goals. This isn’t an abstract or hypothetical 
issue — the appropriate diagnosis and treatment of prostate cancer is cur-
rently the subject of very vigorous debate centering around these very issues.

 A logistic model fitted to a set of data can yield any sensitivity (between 0 and 
100 percent) and any specificity (between 0 and 100 percent), depending on 
what cut value you select. The trick is to pick a cut value that gives the optimal 
combination of sensitivity and specificity, striking the best balance between 
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false-positive and false-negative predictions, in light of the different conse-
quences of the two types of false predictions. To find this optimal cut value, 
you need to know precisely how sensitivity and specificity play against each 
other — that is, how they simultaneously vary with different cut values. And 
there’s a neat way to do exactly that, which I explain in the following section.

Rocking with ROC curves
A special kind of graph displays the sensitivity/specificity tradeoff for any 
fitted logistic model. It has the rather peculiar name Receiver Operator 
Characteristics (ROC) graph, which comes from its original use during World 
War II to analyze the performance characteristics of people who operated 
RADAR receivers. Nowadays it’s used for all kinds of things that have nothing 
to do with RADAR, but the original name has stuck.

 An ROC graph has a curve that shows you the complete range of sensitivity 
and specificity that can be achieved for any fitted logistic model, based on the 
selected cut value. The program generates an ROC curve by effectively trying 
all possible cut values between 0 and 1, calculating the predicted outcomes, 
cross-tabbing them against the observed outcomes, calculating sensitivity and 
specificity, and then graphing sensitivity versus specificity.

The ROC curve always runs from the lower-left corner of the graph (0 percent 
sensitivity and 100 percent specificity) to the upper-right corner (100 per-
cent sensitivity and 0 percent specificity). Most programs also draw a diago-
nal straight line between the lower-left and upper-right corners (representing 
the formula: sensitivity = 1 – specificity) to indicate the total absence of any 
predicting ability at all.

Figure 20-9 shows the ROC curve for the data in Table 20-1, produced by 
the R statistical system. A conventional ROC graph has sensitivity (dis-
played either as fractions between 0 and 1 or as percentages between 0 and 
100) running up the Y axis, and 1 – specificity running across the X axis. 
Alternatively, the specificity can run backwards (from right to left) across the 
X axis, as shown in Figure 20-9.

 ROC curves almost always lie in the upper-left part of the graph area, and the 
farther away from the diagonal line they are, the better the predictive model 
is. For a nearly perfect model, the ROC curve runs up along the Y axis from the 
lower-left corner to the upper-left corner, then along the top of the graph from 
the upper-left corner to the upper-right corner.

Because of how sensitivity and specificity are calculated, the graph appears 
as a series of steps, with more data producing more and smaller steps. For 
clarity, I show the cut values for predicted probability as a scale along the 
ROC curve itself; sadly, most statistical software doesn’t do this for you.
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Figure 20-9:  
ROC curve 
from dose 

mortality 
data.

 
 Illustration by Wiley, Composition Services Graphics

 The ROC curve helps you choose a cut value that gives the best tradeoff 
between sensitivity and specificity:

 ✓ To have very few false positives: Choose a higher cut value to give a 
high specificity. Figure 20-9 shows that by setting the cut value to 0.6, 
you can simultaneously achieve about 93 percent specificity and 87 per-
cent sensitivity.

 ✓ To have very few false negatives: Choose a lower cut value to give higher 
sensitivity. Figure 20-9 shows you that if you set the cut value to 0.3, you 
can have almost perfect sensitivity (almost no false negatives), but your 
specificity will be only about 75 percent (about 25 percent false positives).
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The software may optionally display the area under the ROC curve (ROC 
AUC), along with its standard error and a p value. This is another measure 
of how good the predictive model is. The diagonal line has an AUC of 0.5; the 
p value indicates whether the AUC is significantly greater than 0.5 (that is, 
whether your predictive model is better than a null model).

Heads Up: Knowing What Can Go  
Wrong with Logistic Regression

Logistic regression presents many of the same potential pitfalls as ordinary 
least-squares regression (see Chapters 18 and 19), as well as several that are 
specific to logistic regression. Watch out for some of the more common pit-
falls, explained in the following sections.

Don’t fit a logistic function  
to nonlogistic data

 Don’t use logistic regression to fit data that doesn’t behave like the logistic S 
curve. Plot your grouped data (as shown in Figure 20-1b), and if it’s clear that 
the fraction of yes outcome subjects isn’t leveling off at Y = 0 or Y = 1 for very 
large or very small X values, then logistic regression isn’t the way to go. And 
pay attention to the Hosmer-Lemeshow p value (described earlier) produced 
by the regression software. If this value is much less than 0.05, it indicates that 
your data is not consistent with a logistic model. In Chapter 21, I describe a 
more generalized logistic model that contains other parameters for the upper 
and lower leveling-off values.

Watch out for collinearity and 
 disappearing significance
All regression models with more than one predictor variable can be plagued 
with problems of collinearity (when two or more predictor variables are 
strongly correlated with each other), and logistic regression is no exception. 
I describe this problem, and the troubles it can cause, in Chapter 19.



286 Part IV: Looking for Relationships with Correlation and Regression 

Check for inadvertent reverse-coding  
of the outcome variable

 The outcome variable should always be 1 for a yes outcome and 0 for a no out-
come (refer to Table 20-1 for an example). Some programs may let you record 
the outcome variable in your data file as descriptive terms like Lived and Died; 
then the program translates these terms to 0 and 1 behind the scenes. But the 
program may translate them as the opposite of what you want — it may trans-
late Lived to 1 and Died to 0, in which case the fitted formula will predict the 
probability of living rather than dying. This reversal won’t affect any p values, 
but it will cause all odds ratios and their confidence intervals to be the recip-
rocals of what they would have been, because they will now refer to the odds 
of living rather than the odds of dying.

Don’t misinterpret odds ratios 
for  numerical predictors

 The value of a regression coefficient depends on the units in which the cor-
responding predictor variable is expressed. So the coefficient of a height 
variable expressed in meters is 100 times larger than the coefficient of height 
expressed in centimeters. In logistic regression, odds ratios are obtained by 
exponentiating the coefficients, so switching from centimeters to meters cor-
responds to raising the odds ratio (and its confidence limits) to the 100th 
power. The odds ratio always represents the factor by which the odds of 
getting the outcome event increases when the predictor increases by exactly 
one unit of measure (whatever that unit may be).

Sometimes you may want to express the odds ratio in more convenient units 
than what the data was recorded in. For the example in Table 20-1, the odds 
ratio for dose as a predictor of death is 1.0115 per REM. This isn’t too mean-
ingful because one REM is a very small increment of radiation. By raising 
1.0115 to the 100th power (get out your calculator), you get the equivalent 
odds ratio of 3.1375 per 100 REMs, and you can express this as, “Every addi-
tional 100 REMs of radiation more than triples the odds of dying.”

Don’t misinterpret odds ratios  
for categorical predictors

 Categorical predictors should be coded numerically as I describe in Chapter 7. 
If you express categories as text, the computer may not translate them the 
way you want it to, and the resulting odds ratios may be the reciprocal of 
what you want or may be different in other ways.
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 Check the software manual to see whether there’s a way to force the program 
to code categorical variables the way you want. As a last resort, you can 
create one or more new numeric variables and do the recoding yourself.

Beware the complete separation problem
The complete separation problem, also called the perfect predictor problem, 
is a particularly nasty (and surprisingly frequent) problem that’s unique to 
logistic regression. As incredible as it may sound, it’s a sad fact that a logistic 
regression will fail if the data is too good!

 If your predictor variable completely separates the yes outcomes from the no 
outcomes, the maximum likelihood method will try to make the coefficient of 
that variable infinite (although most regression software will give up before 
getting quite that far). The odds ratio also wants to be infinity if the coefficient 
is positive, or 0 if the coefficient is negative. The standard error wants to be 
infinite too, so your confidence interval may have a lower bound of 0, an 
upper bound of infinity, or both. Also, if you’re doing multiple logistic regres-
sion, the perfect predictor problem will rear its ugly head if any of your pre-
dictor variables completely separates the outcomes.

Check out the problem shown in Figure 20-10. The regression is trying to 
make the curve come as close as possible to all the data points. Usually it has 
to strike a compromise, because (especially in the middle part of the data) 
there’s a mixture of 1s and 0s. But with perfectly separated data, no compro-
mise is necessary. As b becomes infinitely large, the logistic function morphs 
into a step function that touches all the data points.

 Take the time to examine your data and see whether any individual variables 
may be perfect predictors:

 1. Pick each predictor variable, one by one.

 2. Sort your data file by that variable.

 3. Run down the listing looking at the values in the outcome column to 
see whether they are completely separated (all nos followed by all 
yeses).

The perfect predictor problem may bite you even if each variable passes 
this test, because it can arise if a combination of two or more variables 
acting together can completely separate the outcome. Unfortunately, there’s 
no easy way to detect this situation by sorting or graphing your data.
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Figure 20-10:  
The com-

plete 
separation 
(or perfect 
predictor) 
problem.

 
 Illustration by Wiley, Composition Services Graphics

 Now for the really bad news: No really good solution to the complete separa-
tion problem exists. You may be able to add more data points — this some-
times introduces enough random variability to break the complete separation. 
Or you can remove the variable(s) responsible for complete separation from 
your model, but that’s not very satisfying: Why would you want to throw away 
your best predictors? Some advanced logistic software will at least come up 
with a finite lower confidence limit for an infinite odds ratio (or a finite upper 
limit for a zero odds ratio), but that’s about the best you can hope for.

Figuring Out the Sample Size You  
Need for Logistic Regression

Estimating the required sample size for a logistic regression (even a simple 
one-predictor regression) can be a pain. Specifying the desired power and 
alpha level is easy enough (see Chapter 3 for more about these items), and 
you can state the effect size of importance as an odds ratio.

 But the required sample size also depends on a couple of other things:

 ✓ The relative frequencies of yes and no outcomes

 ✓ How the predictor variable is distributed
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And with multiple predictors in the model, determining sample size is even 
more complicated. There can be a separate effect size of importance and 
desired power for each predictor, and the predictors themselves may be 
 correlated.

Some programs and web pages calculate sample size for various logistic 
models involving one or more than one predictor and for dichotomous or 
continuous predictors. But these programs are likely to ask you for more 
information than you’re able to provide. You can use simulation methods if 
data from an earlier, similar study is available, but this is no task for the ama-
teur. For a rigorous sample-size calculation, you may have no choice but to 
seek the help of a professional statistician.

 Here are two simple approaches you can use if your logistic model has only 
one predictor. In each case, you replace the logistic regression with another 
analysis that’s sort of equivalent to it, and then do a sample-size calcula-
tion based on that other kind of analysis. It’s not ideal, but it can give you an 
answer that’s close enough for planning purposes.

 ✓ If the predictor is a dichotomous category (like gender), logistic 
regression gives the same p value you get from analyzing a fourfold 
table. Therefore, you can use the sample-size calculations I describe in 
Chapter 13.

 ✓ If the predictor is a continuous numerical quantity (like age), you can 
pretend that the outcome variable is the predictor and age is the out-
come. I know this gets the cause-and-effect relationship backwards, but 
if you make that conceptual flip, then you can ask whether the two dif-
ferent outcome groups have different mean values for the predictor. You 
can test that question with an unpaired Student t test, so you can use 
the sample-size calculations I describe in Chapter 12.
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Chapter 21

Other Useful Kinds of Regression
In This Chapter
▶ Using Poisson regression to analyze counts and event rates
▶ Getting a grip on nonlinear regression
▶ Smoothing data without making any assumptions

T 
his chapter covers some other kinds of regression you’re likely to 
encounter in biostatistical work. They’re not quite as ubiquitous as the 

types described in Chapters 18–20 (straight-line regression, multiple regres-
sion, and logistic regression), but you should be aware of them, so I collect 
them here. I don’t go into a lot of detail, but I describe what they are, when 
you may want to use them, how to run them and interpret the output, and 
what special situations you should watch out for.

Note: I don’t cover survival regression in this chapter, even though it’s one of 
the most important kinds of regression analysis in biostatistics. It has its own 
chapter (Chapter 24), in Part V of this book, which deals with the analysis of 
survival data.

Analyzing Counts and Rates  
with Poisson Regression

Statisticians often have to analyze outcomes consisting of the number of 
occurrences of an event over some interval of time, like the number of fatal 
highway accidents in a city in a year. If the occurrences seem to be getting 
more numerous as time goes on, you may want to perform a regression analy-
sis to see whether the upward trend is statistically significant and to estimate 
the annual rate of increase (with its standard error and confidence interval).

Although they’re often analyzed by ordinary least-squares regression, event 
counts don’t really meet the least-squares assumptions — they aren’t well 
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approximated as continuous, normally distributed data unless the counts 
are very large. Also, their variability is neither constant nor proportional to 
the counts themselves. So event-count outcomes aren’t best analyzed by 
straight-line or multiple least-squares regression.

Because independent random events (like highway accidents) should follow 
a Poisson distribution (see Chapter 25), they should be analyzed by a kind of 
regression designed for Poisson outcomes. And there is indeed just that kind 
of specialized regression, called (you never would’ve guessed this) Poisson 
regression. The following sections provide the basics on the model used for 
this regression, how to run and interpret its output, and a few extra tasks it 
can handle.

Introducing the generalized linear model
Most statistical software packages don’t offer anything explicitly called 
Poisson regression; instead, they have a more general regression technique 
called the generalized linear model (GLM).

 Don’t confuse the generalized linear model with the very similarly named gen-
eral linear model that I describe in Chapter 12. It’s unfortunate that these two 
names are almost identical, because they describe two very different things. 
The general linear model used to be abbreviated GLM before the generalized 
linear model came on the scene in the 1970s, but the former is now usually 
abbreviated as LM in a (not very successful) attempt to avoid confusion.

GLM is similar to LM only in that the predictor variables usually appear in the 
model as the familiar linear combination:

c0 + c1x1 + c2x2 + c3x3 + . . .

where the x’s are the predictor variables, and the c’s are the regression coef-
ficients (with c0 being called a constant term, or intercept).

But GLM extends the capabilities of LM in two important ways:

 ✓ With LM, the linear combination becomes the predicted value of the 
outcome, but with GLM, you can specify a transformation (called a link 
function) that turns the linear combination into the predicted value. As I 
note in Chapter 20, logistic regression applies exactly this kind of trans-
formation: The linear combination (call it V) goes through the logistic 
function 1/(1 + e–V) to convert it into a predicted probability of having 
the outcome event, and you can use GLM to perform logistic regression.
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 ✓ With LM, the outcome is assumed to be a continuous, normally distrib-
uted variable, but with GLM, the outcome can be continuous or integer, 
obeying any of several different distribution functions, like normal, 
exponential, binomial, or Poisson. (For example, as I explain in Chapter 
20, logistic regression is used when the outcome is a binomial variable 
indicating whether the event did or did not occur.)

 GLM is the Swiss army knife of regression — it can do ordinary least-squares 
regression, logistic regression, Poisson regression, and a whole lot more. Most 
of the advanced statistical software systems (SAS, SPSS, R) offer GLM so that 
they don’t have to program a lot of other specialized regressions. So if your 
software package doesn’t offer logistic or Poisson regression, check to see 
whether it offers GLM; if so, then you’re all set. (Flip to Chapter 4 for an intro-
duction to statistical software.)

Running a Poisson regression
Suppose you want to study the number of fatal highway accidents per year in 
a city. Table 21-1 shows some made-up fatal-accident data over the course of 
12 years. Figure 21-1 shows a graph of this data, created using the R statisti-
cal software package.

Table 21-1 Yearly Data on Fatal Highway Accidents in One City
Calendar Year Fatal Accidents
2000 10
2001 12
2002 15
2003 8
2004 8
2005 15
2006 4
2007 20
2008 20
2009 17
2010 29
2011 28
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Figure 21-1: 
Yearly data 

on fatal 
highway 

accidents in 
one city.

 
 Illustration by Wiley, Composition Services Graphics

 Running a Poisson regression is similar in many (but not all) ways to running 
the other common kinds of regression:

 1. Assemble the data for Poisson regression just as you would for any 
kind of regression. For this example, you have a row of data for each 
year, a column containing the outcome values (the number of accidents 
each year), and a column for the predictor (the year).

 2. Tell the software what the predictor and outcome variables are, either 
by name or by picking from a list of variables, depending on the 
 software.

 3. Tell the software what kind of regression you want it to carry out by 
specifying the family of the dependent variable’s distribution and the 
link function.

  Step 3 is not obvious, and you have to consult your software’s manual. 
The R program, for instance, has everything specified in a single instruc-
tion, which looks like this:

  glm(formula=Accidents ~ Year, family = poisson(link = “identity”))

  This tells R everything it needs to know: The outcome is the variable 
called Accidents, the predictor is the variable called Year, and the out-
come variable follows the Poisson distribution. The link = “identity” 
tells R that you want to fit a model in which the true event rate rises in a 
linear fashion; that is, it increases by a constant amount each year.

 4. Press the Go button and get ready!

  The computer does all the work and presents you with the answers.



295 Chapter 21: Other Useful Kinds of Regression

Interpreting the Poisson regression output
After you follow the steps for running a Poisson regression in the preceding 
section, the program produces output like that shown in Figure 21-2.

 

Figure 21-2: 
Poisson 

regression 
output from 
R’s general-

ized linear 
model func-

tion (glm).
 

 Illustration by Wiley, Composition Services Graphics

This output has the same general structure as the output from other kinds of 
regression. The most important parts of it are the following:

 ✓ In the Coefficients table, the estimated regression coefficient for Year is 
1.3298, indicating that the annual number of fatal accidents is increasing 
by about 1.33 accidents per year.

 ✓ The standard error (SE) of 0.3169 (or about 0.32) indicates the precision 
of the estimated rate increase per year. From the SE, using the rules 
given in Chapter 10, the 95 percent confidence interval (CI) around the 
estimated annual increase is approximately 1.3298 ± 1.96 × 0.3169, which 
gives a 95 percent CI of 0.71 to 1.95.

 ✓ The z value column contains the value of the regression coefficient 
divided by its standard error. It’s used to calculate the p value that 
appears in the last column of the table.

 ✓ The last column, Pr(>|z|), is the p value for the significance of the 
increasing trend. The Year variable has a p value of 2.71e-05, which 
is scientific notation (see Chapter 2) for 0.0000271, so the apparent 
increase in rate over the 12 years is highly significant. (Over the years, 
the value of 0.05 has become accepted as a reasonable criterion for 
declaring significance; don’t declare significance unless the p value is 
less than 0.05. See Chapter 3 for an introduction to p values.)

 ✓ AIC (Akaike’s Information Criterion) indicates how well this model fits 
the data. The value of 81.72 isn’t useful by itself, but it’s very useful 
when choosing between two alternative models, as I explain later in this 
chapter.
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The R program can also provide the predicted annual event rate for each 
year, from which you can add a “trend line” to the scatter graph, indicating 
how you think the true event rate might vary with time (see Figure 21-3).

 

Figure 21-3: 
Poisson 

regression, 
assuming 

a constant 
increase in 

accident 
rate per 

year.
 

 Illustration by Wiley, Composition Services Graphics

Discovering other things that  
Poisson regression can do
The following sections describe some additional things you can do with your 
data, using R’s GLM function to perform Poisson regression.

Examining nonlinear trends
The straight line in Figure 21-3 doesn’t seem to reflect the fact that the 
accident rate remained low for the first few years and then started to climb 
rapidly after 2006. Perhaps the true trend isn’t a straight line (where the 
rate increases by the same amount each year); it may be an exponential rise 
(where the rate increases by a certain percentage each year). You can have R 
fit an exponential rise by changing the link option from “identity” to “log” in 
the statement that invokes the Poisson regression:

glm(formula=Accidents ~ Year, family=poisson(link=“=”log”))

This produces the output shown in Figure 21-4 and graphed in Figure 21-5.
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Figure 21-4: 
Output from 

an exponen-
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Poisson 

regression.
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Figure 21-5: 
Linear and 

exponential 
trends fitted 
to accident 

data.
 

 Illustration by Wiley, Composition Services Graphics

Because of the “log” link used in this regression run, the coefficients are 
related to the logarithm of the event rate. So the relative rate of increase per 
year is obtained by taking the antilog of the regression coefficient for Year. 
This is done by raising e (the mathematical constant 2.718…) to the power 
of the regression coefficient for Year: e0.10414, which is about 1.11. So accord-
ing to an exponential increase model, the annual accident rate increases by a 
factor of 1.11 (that is, an 11 percent relative increase) each year. The dashed-
line curve in Figure 21-4 shows this exponential trend, which appears to 
accommodate the steeper rate of increase seen after 2006.

Comparing alternative models
The AIC value for the exponential trend model is 78.476, which is about 3.2 
units lower than for the linear trend model (AIC = 81.72). Smaller AIC values 
indicate better fit, so the true trend is more likely to be exponential rather 
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than linear. But you can’t conclude that the model with the lower AIC is really 
better unless the AIC is about six units better, so in this example you can’t 
say for sure whether the trend is linear or exponential (or something else). 
But the exponential curve does seem to predict the high accident rates seen 
in 2010 and 2011 better than the linear trend model.

Working with unequal observation intervals
In this fatal accident example, each of the 12 data points represents the acci-
dents observed during a one-year interval. But in other applications (like 
analyzing the frequency of ER visits after a treatment for emphysema, where 
there is one data point per person), the width of the observation interval may 
vary from one person to another. GLM lets you provide, for each data point, 
an interval width along with the event count. For arcane reasons, many statis-
tical programs refer to this interval-width variable as the offset.

Accommodating clustered events
The Poisson distribution applies when the observed events are all indepen-
dent occurrences. But this assumption isn’t met if events occur in clusters. 
So, for example, if you count individual highway fatalities instead of fatal 
highway accidents, the Poisson distribution doesn’t apply, because one fatal 
accident may kill several people.

 The standard deviation (SD) of a Poisson distribution is equal to the square 
root of the mean of the distribution. But if clustering is present, the SD of the 
data is larger than the square root of the mean, a situation called overdisper-
sion. GLM can accommodate overdispersion; you just tell R to make the distri-
bution family quasipoisson rather than poisson, like this:

glm(formula=Accidents ~ Year, family=quasipoisson(link=“=”log”))

Anything Goes with Nonlinear 
Regression

No treatment of regression would be complete without discussing the most 
general (and potentially the most challenging) of all kinds of least-squares 
regression — general nonlinear least-squares regression, or nonlinear 
curve-fitting. In the following sections, I explain how nonlinear regression is 
different from other kinds, I describe how to run and interpret a nonlinear 
regression (with the help of a drug research example), and I show you some 
tips involving equivalent functions.
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Distinguishing nonlinear regression 
from other kinds
In the kinds of regression I describe earlier in this chapter and in Chapters 
18–20, the predictor variables and regression coefficients always appear in 
the model as a linear combination: c0 + c1x1 + c2x2 + c3x3 + … + cnxn. But in non-
linear regression, the coefficients no longer have to appear paired up with 
predictor variables (like c2x2); they now have a more independent existence 
and can appear on their own, anywhere in the formula. In fact, the name coef-
ficient, which implies a number that’s multiplied by a variable, is too limited 
to describe how they can be used in nonlinear regression; instead, they’re 
referred to as parameters.

 The formula for a nonlinear regression model may be any algebraic expres-
sion, involving sums and differences, products and ratios, and powers and 
roots, together with any combination of logarithmic, exponential, trigonomet-
ric, and other advanced mathematical functions (see Chapter 2 for an intro-
duction to these items). The formula can contain any number of predictor 
variables and any number of parameters (and these formulas often contain 
many more parameters than predictor variables).

Table 21-2 shows a few of the many nonlinear functions you may encounter in 
biological research.

Table 21-2 Some Examples of Nonlinear Functions
Function Description
Conc = C0e–k × Time Concentration versus time: Exponential (first-order) 

decline from C0 at time 0 to zero at infinite time
Conc = C0e–k × Time + C∞ Concentration versus time: Exponential (first-order) 

decline from C0 at time 0 to some non-zero leveling-off 
value
An S-shaped, logistic-type curve with arbitrary leveling-
off values (not necessarily 0 and 100 percent)

Y = aXb A power curve in which the power isn’t necessarily a 
whole number
Arrhenius equation for temperature dependence of 
rate constants and many other physical/chemical 
 properties
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 Unlike other types of regression that I describe earlier in this chapter and 
book, in which you give the statistical software your data, click the Go button, 
and wait for the answer to appear, full-blown nonlinear regression is never 
such a no-brainer. First, you have to decide what function you want to fit to 
your data (out of the infinite number of possible functions you could dream 
up). Sometimes the general form of the function is determined (or at least sug-
gested) by a scientific theory (this would be called a theoretical or mechanistic 
function and is more common in the physical sciences than in the life sci-
ences). Other times, you may simply pick a function that has the right general 
shape (this would be called an empirical function). You also have to provide 
starting guesses for each of the parameters appearing in the function. The 
regression software tries to refine these guesses, using an iterative process 
that may or may not converge to an answer, depending on the complexity of 
the function you’re fitting and how close your initial guesses are to the truth.

In addition to these special problems, all the other complications of multi-
variate regression (like collinearity; see Chapter 19) can appear in nonlinear 
problems, often in a more subtle and hard-to-deal-with way.

Checking out an example  
from drug research
One common nonlinear regression problem arises in drug development 
research. As soon as scientists start testing a promising new compound, they 
want to determine some of its basic pharmacokinetic (PK) properties; that 
is, to learn how the drug is absorbed, distributed, modified, and eliminated 
by the body. Some clinical trials are designed specifically to characterize 
the pharmacokinetics of the drug accurately and in great detail, but even the 
earliest Phase I trials (see Chapter 6) usually try to get at least some rudimen-
tary PK data as a secondary objective of the trial.

Raw PK data often consists of the concentration of the drug in the blood 
at various times after administering a dose of the drug. Consider a simple 
experiment, in which 10,000 micrograms (μ g) of a new drug is given as a 
single bolus (a rapid injection into a vein). Blood samples are drawn at pre-
determined times after dosing and are analyzed for the drug. Hypothetical 
data from one subject is shown in Table 21-3 and graphed in Figure 21-6. The 
drug concentration in the blood is expressed in units of micrograms per deci-
liter (μg/dL); a deciliter is one-tenth of a liter.
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Table 21-3 Blood Drug Concentration versus Time
Time after Dosing (In Hours) Drug Concentration in Blood (μ g/dL)
0.25 57.4
0.5 54.0
1 44.8
1.5 52.7
2 43.6
3 40.1
4 27.9
6 20.6
8 15.0
12 10.0

 

Figure 21-6: 
The con-

centration 
of an intra-

venous drug 
declines as 

it is elimi-
nated from 

the body.
 

 Illustration by Wiley, Composition Services Graphics

Several basic PK parameters (maximum concentration, time of maximum 
concentration, area under the curve) are usually calculated directly from the 
 concentration-versus-time data, without having to fit any curve to the points. 
But two important parameters are usually obtained from a regression analysis:
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 ✓ The volume of distribution (Vd): The effective volume of fluid or tissue 
through which the drug distributes. This effective volume could be 
equal to the blood volume but could be greater if the drug also spreads 
through fatty tissue or other parts of the body. If you know how much 
drug you infused (Dose), and you know the plasma concentration at the 
moment of infusion (C0), before any of the drug had been eliminated, 
you can calculate the volume of distribution as Vd = Dose/C0. But you 
can’t directly measure C0 — by the time the drug has distributed evenly 
through the bloodstream, some of it has already been eliminated from 
the body. So C0 has to be estimated by extrapolating the measured con-
centrations backward in time to the moment of infusion (Time = 0).

 ✓ The elimination half-life (λ): The time it takes for half of the drug in the 
body to be eliminated.

Pharmacokinetic theory is pretty well developed, and it predicts that (under 
some reasonable assumptions), the drug concentration (Conc) in the blood 
following a bolus infusion should vary with time (Time) according to the 
equation:

where ke is the elimination rate constant. ke is related to the elimination half-
life (λ) according to the formula: λ = 0.693/ke, where 0.693 is the natural loga-
rithm of 2. So if you can fit the preceding equation to your Conc-versus-Time 
data in Table 21-3, you can get C0, from which you can calculate Vd, and you 
can get ke, from which you can calculate λ.

The preceding equation is nonlinear in the parameters (ke appears in the 
exponent). In the old days, before nonlinear regression software became 
widely available, people would shoehorn this nonlinear regression problem 
into a straight-line regression program by working with the logarithms of the 
concentrations. But that approach has several problems, one of which is that 
it can’t be generalized to handle more complicated equations that often arise.

Running a nonlinear regression
 Nonlinear curve-fitting is supported by many modern statistics packages, like 

SPSS, SAS, GraphPad Prism, and R (see Chapter 4). You can also set up the 
calculations in Excel, although it’s not particularly easy. Finally, the web page 
http://StatPages.info/nonlin.html can fit any function you can write, 
involving up to eight independent variables and up to eight parameters. Here I 
describe how to do nonlinear regression in R:

http://StatPages.info/nonlin.html
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 1. Provide the concentration and time data.

  R can read data files in various formats (Excel, Access, text files, and so 
on), or you can directly assign values to variables, using statements like 
the following (which come from Table 21-3):

  Time = c(0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12)

  Conc = c(57.4, 54.0, 44.8, 52.7, 43.6, 40.1, 27.9, 20.6, 15.0, 10.0)

  In the two preceding equations, c is a built-in R function that cre-
ates an array (see Chapter 2) from a list of numbers.

 2. Specify the equation to be fitted to the data, using the algebraic syntax 
your software requires.

  I write the equation this way (using R’s algebraic syntax): Conc ~ C0 * 
exp(- ke * Time)

 3. Let the software know that C0 and ke are parameters to be fitted, and 
provide initial guesses for these values.

  Nonlinear curve-fitting is a complicated task that works by iteration — 
you give it some rough guesses, and it refines them into closer estimates 
to the truth, repeating this process until it arrives at the best (least-
squares) solution.

  Coming up with starting guesses can be tricky for some nonlinear 
regression problems; it’s more of an art than a science. Sometimes, if 
the parameters have physiological meaning, you may be able to make 
a guess based on known physiology or past experience, but sometimes 
it just has to be trial and error. You can graph your observed data in 
Excel, and then superimpose a curve from values calculated from the 
function for various parameter guesses that you type in, and you can 
play around with the parameters until the curve is at least in the ball-
park of the observed data.

  In this example, C0 is the concentration you expect at the moment of 
dosing (at t = 0). From Figure 21-6, it looks like the concentration starts 
out around 50, so you can use 50 as an initial guess for C0. The ke 
parameter affects how quickly the concentration decreases with time. 
Figure 21-6 indicates that the concentration seems to decrease by half 
about every few hours, so λ should be somewhere around 4 hours. 
Because λ = 0.693/ke, a little algebra gives ke = 0.693/λ, or 0.693/4, so you 
may try 0.2 as a starting guess for ke. You tell R the starting guesses by 
using the syntax: start=list(C0=50, ke=0.2).

The full R statement for doing the regression, using its built-in function nls 
(which stands for nonlinear least-squares) and summarizing the output is

summary(nls(Conc ~ C0 * exp(-ke * Time), start = list(C0 = 50, ke = 0.2)))
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Interpreting the output
As complicated as nonlinear curve-fitting may be, the output is quite simple — 
very much like the output from ordinary linear regression and not any more 
difficult to interpret. Figure 21-7 shows the relevant part of R’s output for this 
example.

 

Figure 21-7: 
Results of 
nonlinear 

regression 
in R.

 
 Illustration by Wiley, Composition Services Graphics

First is a restatement of the function you’re fitting. Then comes the regres-
sion table, which has a row for every adjustable parameter that appears in 
the function. Like every other kind of regression table, it shows the fitted 
value for the parameter, its standard error, and the p value (the last column) 
indicating whether or not that parameter was significantly different from 
zero. C0 is 59.5 ± 2.3 micrograms/deciliter (μ g/dL); and ke is 0.163 ± 0.0164 hr-1 
(first-order rate constants have units of “per time”). From these values, you 
can calculate the PK parameters you want:

 ✓ Volume of distribution: Vd = Dose/C0 = 10,000 μ g/59.5 μ g/dL = 168 dL, or 
16.8 liters. (This amount is several times larger than the blood volume 
of the average human, indicating that this drug is going into other parts 
of the body besides the blood.)

 ✓ Elimination half-time: t1
⁄2 = 0.693/ke = 0.693/0.163 hr-1, or 4.25 hours. (After 

4.25 hours, only 50 percent of the original dose is left in the body; after 
8.5 hours, only 25 percent of the original dose remains; and so on.)

How precise are these PK parameters? (What is their SE?) Chapter 11 describes 
how SEs propagate through calculations, and gives you several ways to answer 
this question. Using the online calculator I describe in that chapter, you can 
calculate that the Vd = 16.8 ± 0.65 liters, and λ = 4.25 ± 0.43 hours.

R can also easily generate the predicted value for each data point, from 
which you can superimpose the fitted curve onto the observed data points, 
as in Figure 21-8.

R also provides the residual standard error, defined as the standard deviation 
of the vertical distances of the observed points from the fitted curve. The 
value of 3.556 means that the points scatter about 3.6 μ g/dL above and below 
the fitted curve. R can also provide Akaike’s Information Criterion (AIC), 
which is useful in selecting which of several possible models best fits the data.
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Figure 21-8: 
Nonlinear 

model fitted 
to drug con-

centration 
data.

 
 Illustration by Wiley, Composition Services Graphics

Using equivalent functions to fit  
the parameters you really want
It’s inconvenient, annoying, and error-prone to have to perform calculations 
on the parameters you get from a nonlinear regression (like C0 and the ke rate 
constant) to get the parameters you really wanted (like Vd and t1

⁄2), and even 
more so to get their standard errors. Wouldn’t it be nice if you could get Vd 
and λ and their SEs directly from the nonlinear regression program? Well, in 
many cases you can!

With nonlinear regression, there’s usually more than one way to skin a cat. 
Very often you can express the formula in an equivalent form that directly 
involves the parameters you’re interested in. Here’s how it works for the PK 
example I use in the preceding sections.

Because Vd = Dose/C0, that means (from high-school algebra) that C0 = Dose/Vd, 
why not use Dose/Vd instead of C0 in the formula you’re fitting? If you do, it 
becomes . And you can go even further than that. It 

turns out that a first-order exponential-decline formula can be written either as 

 or as the algebraically equivalent form .

Applying both of these substitutions, you get the equivalent model: 

, which produces exactly the same fitted curve as the 
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original model, but it has the tremendous advantage of giving you exactly the 
PK parameters you want (Vd and t1⁄2), rather than other parameters (C0 and k) 
that you have to do further calculations on.

You already know that Dose is 10,000 micrograms (from the original description 
of this example), so you can substitute this value for Dose in the formula to be 
fitted. You’ve already estimated t1⁄2 as 4 hours and C0 as about 50 μ g/dL from 
looking at Figure 21-6, as I describe earlier, so you can estimate Vd as 10,000/50, 
which is 200 deciliters. With these guesses, the final R statement is

summary(nls(Conc ~ (10000/Vd) * 2^(-Time/tHalf ), start =  
list(Vd = 200, tHalf = 4)))

which produces the output shown in Figure 21-9.

 

Figure 21-9: 
Nonlinear 

regression 
using the PK 
parameters 

you’re inter-
ested in.

 
 Illustration by Wiley, Composition Services Graphics

Now you can directly see, with no further calculations required, that the 
volume of distribution is 168.2 ± 6.5 dL (or 16.8 ± 0.66 liters), and the elimina-
tion half-time is 4.24 ± 0.43 hours.

Smoothing Nonparametric  
Data with LOWESS

Sometimes you want to fit a smooth curve to a set of points that don’t seem 
to conform to any curve (straight line, parabola, exponential, and so forth) 
that you’re familiar with. You can’t use the usual linear or nonlinear regres-
sion methods if you can’t write an equation for the curve you want to fit. 
What you need is a kind of nonparametric regression — one that doesn’t 
assume any particular model (formula) for the relationship, but rather just 
tries to draw a smooth line through the data points.
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Several kinds of nonparametric data-smoothing methods have been devel-
oped. One popular one is called LOWESS, which stands for Locally Weighted 
Scatterplot Smoothing. Many statistical programs, like SAS and R, can do 
LOWESS regression. In the following sections, I explain how to run a LOWESS 
analysis and adjust the amount of smoothing (or “stiffness” of the curve).

Running LOWESS
Suppose you discover a new kind of hormone that is produced in the ovaries 
of women. The blood levels of this hormone should vary with age, being rela-
tively low before puberty and after menopause, and high during child-bearing 
age. You want to characterize and quantify this age dependence as precisely 
as possible.

Now suppose you acquire 200 blood samples drawn from females of all ages 
(from 2 to 90 years) for another research project, and after addressing all 
human-subjects-protection issues, you analyze these specimens for your new 
hormone. A graph of hormone level versus age may look like Figure 21-10.

 

Figure 21-10:  
Data that 

doesn’t 
seem to 

conform to 
any simple 

function.
 

 Illustration by Wiley, Composition Services Graphics

You have quite a lot of scatter in these points, which makes it hard to see the 
more subtle aspects of the age dependency: At what age does the hormone 
level start to rise? When does it peak? Does it remain fairly constant through-
out child-bearing years? When does it start to decline? Is the rate of post-
menopause decline constant or does it change with advancing age?
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It would be easier to answer those questions if you had a curve that repre-
sented the data without all the random fluctuations of the individual points. 
How would you go about fitting a curve to this data? LOWESS to the rescue!

Running LOWESS in R is quite simple; you need only to provide the program 
with the x and y variables, and it does the rest. If you have imported your 
data into R as two variables, x and y, the R instruction to run a LOWESS 
regression is very simple: lowess(x, y, f = 0.2). (I explain the f = 0.2 part in the 
following section.)

Unlike other forms of regression, LOWESS doesn’t produce a coefficients 
table; the only output is a table of smoothed y values, one for each data 
point, from which (using another R instruction) you can plot the smoothed 
line superimposed on the scatter graph. Figure 21-11 shows the results of 
running the LOWESS routine provided with the R software.

 

Figure 21-11: 
The fitted 
LOWESS 

curve fol-
lows the 
shape of 
the data, 

whatever it 
may be.
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The smoothed curve seems to fit the data quite well, except possibly at the 
lowest ages. The individual data points don’t show any noticeable upward 
trend until age 12 or so, but the smoothed curve starts climbing right from 
age 3. The curve completes its rise by age 20, and then remains flat until 
almost age 50, when it starts declining. The rate of decline seems to be great-
est between ages 50 to 65, after which it declines less rapidly. These subtle-
ties would be very difficult to spot just by looking at the individual data 
points without any smoothed curve.
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Adjusting the amount of smoothing
R’s LOWESS program allows you adjust the “stiffness” of the fitted curve 
by specifying a smoothing fraction, f, which is a number between 0 and 1. 
Figure 21-12 shows what the smoothed curve looks like for three different 
smoothing fractions.

 

Figure 21-12:  
You can 

adjust the 
smoothness 
of the fitted 

curve.
 

 Illustration by Wiley, Composition Services Graphics

 ✓ Setting f = 0.667 (or 2⁄3, which is the value R uses if you leave the f param-
eter out of the LOWESS statement entirely) produces a rather “stiff” 
curve that rises steadily between ages 2 and 40, and then declines 
steadily after that. It misses important features of the data, like the low 
pre-puberty hormone levels, the flat plateau during child-bearing years, 
and the slowing down of the yearly decrease above age 65. You can say 
that this curve shows excessive bias, systematically departing from “the 
truth” in various places along its length.

 ✓ Setting f = 0.1, at the other extreme, produces a very jittery curve with 
a lot of up-and-down wiggles that can’t possibly be real age dependen-
cies, but reflect only random fluctuations in the data. You can say that 
this curve shows excessive variance, with too many random fluctuations 
along its length.
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 ✓ Setting f = 0.2 produces a curve that’s stiff enough not to have random 
wiggles, yet flexible enough to show that hormone levels are fairly low 
until age 10, reach their peak at age 20, stay fairly level until age 50, and 
then decline, with the rate of decline slowing down after age 70. This 
curve appears to strike a good balance, with low bias and low variance.

 Whenever you do LOWESS regression, you have to explore different smooth-
ing fractions to find the sweet spot that gives the best tradeoff between bias 
and variance — showing the real features while smoothing out the random 
noise. Used properly, LOWESS regression can be helpful in gleaning the most 
insight from noisy data. 
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 Estimate sample size in a variety of situations with the help of the Cheat Sheet at  
www.dummies.com/extras/biostatistics.

http://www.dummies.com/extras/biostatistics


In this part . . .
 ✓ Understand what survival data is and how to handle censoring 

(when you don’t know whether the subject died).
 ✓ Prepare survival curves using the life-table and Kaplan-Meier 

methods.
 ✓ Estimate median survival times and survival rates at specified 

times.
 ✓ Compare survival curves between two or more groups, using 

the log-rank test.
 ✓ Analyze multiple predictors of survival using Cox proportional-

hazards regression.



Chapter 22

Summarizing and Graphing 
Survival Data

In This Chapter
▶ Beginning with the basics of survival data
▶ Trying life tables and the Kaplan-Meier method
▶ Applying some handy guidelines for survival analysis
▶ Using survival data for even more calculations

T 
his chapter describes statistical techniques that deal with a special 
kind of numerical data — the interval from some starting point in time 

(such as a diagnosis date or procedure date) to the first (or only) occur-
rence of some particular kind of endpoint event. Because these techniques 
are so often applied to situations where the endpoint event is death, we 
usually call the use of these techniques survival analysis, even when the end-
point is something less drastic than death, like relapse, or even something 
desirable — for example, time to remission of cancer or time to recovery. 
Throughout this chapter, I use terms and examples that imply that the end-
point is death (like survival time instead of time to event), but everything I say 
also applies to other kinds of endpoints.

You may wonder why you need a special kind of analysis for survival data in 
the first place. Why not just treat survival times as ordinary numerical vari-
ables? Why not summarize them as means, medians, standard deviations, 
and so on, and graph them as histograms and box-and-whiskers charts? Why 
not compare survival times between groups with t tests and ANOVAs? Why 
not use ordinary least-squares regression to explore how various factors 
influence survival time?

In this chapter, I explain how survival data isn’t like ordinary numerical data 
and why you need to use special techniques to analyze it properly. I describe 
two ways to construct survival curves: the life table and the Kaplan-Meier 
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methods. I tell you what to watch out for when preparing and interpreting 
survival curves, and I show you how to glean useful information from these 
curves, such as median survival time and five-year survival rates.

Understanding the Basics of Survival Data
To understand survival analysis, you first have to understand survival data — 
that survival times are intervals between certain kinds of events, that these 
intervals are often affected by a peculiar kind of “partial missingness” called 
censoring, and that censored data must be analyzed in a special way to avoid 
biased estimates and incorrect conclusions.

Knowing that survival times are intervals
The techniques described in this chapter for summarizing, graphing, and 
comparing survival times deal with the time interval from a defined starting 
point to the first occurrence of an endpoint event. The event can be death; 
a relapse, like a recurrence of cancer; or the failure of a mechanical compo-
nent, like a heart valve failure that requires an explant (surgical removal). For 
example, if a person had a heart valve implanted on January 10, but the body 
rejected the valve and it had to be removed on January 30, then the time 
interval from implant to explant is 30 – 10, or 20 days.

A person can die only once, but for other endpoints that can occur multiple 
times, such as stroke or seizure, the techniques I describe deal with only 
the first occurrence of the event. More advanced survival analysis methods, 
which can handle repeated occurrences, are beyond the scope of this book.

 The starting point of the time interval is somewhat arbitrary, so it must be 
defined explicitly for every survival analysis. For example: If you’re evaluating 
the natural history of some disease, like cancer or chronic obstructive pul-
monary disease (COPD), the starting point can be the diagnosis date. If you’re 
evaluating the efficacy of a treatment, the starting point is often defined as the 
date the treatment began.

Recognizing that survival times  
aren’t normally distributed

 Even though survival times are continuous or nearly continuous numerical 
quantities, they’re almost never normally distributed. Because of this, it’s gen-
erally not a good idea to use
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 ✓ Means and standard deviations to describe survival times

 ✓ T tests and ANOVAs to compare survival times between groups

 ✓ Least-squares regression to investigate how survival time is influenced 
by other factors

If non-normality were the only problem with survival data, you’d be able 
to summarize survival times as medians and centiles instead of means and 
standard deviations, and you could compare survival between groups with 
nonparametric Mann-Whitney and Kruskal-Wallis tests instead of t tests and 
ANOVAs. But time-to-event data is susceptible to a special situation called 
censoring, which the usual parametric and non-parametric methods can’t 
handle. So special methods have been developed to analyze censored data 
properly.

Considering censoring
What sets survival data apart from other kinds of numerical data is that, in 
many studies, you may not know the exact time of death (or other endpoint) 
for some subjects. This can happen in two general ways:

 ✓ You may not (and usually don’t) have the luxury of observing every 
subject until he dies. Because of time constraints, at some point you 
have to end the study and analyze your data, while some of the subjects 
are still alive. You don’t know how much longer these subjects will ulti-
mately live; you know only that they were still alive up to the last time 
you or your colleagues saw them alive (such as at a clinic visit) or com-
municated with them in some way (such as a follow-up phone call). This 
is called the date of last contact or the last-seen date.

 ✓ You may lose track of some subjects during the study. Subjects can 
drop out of a study or leave town, never to be heard from again, becom-
ing lost to follow-up (LFU). You don’t know whether they’re alive or dead 
now; you know only that they were alive at the date of last contact, 
before you lost track of them.

You can describe these two situations in a general way. You know that each 
subject either died on a certain date or was definitely alive up to some last-
seen date (and you don’t know how far beyond that date he may ultimately 
have lived). The latter situation is called a censored observation.

Figure 22-1 shows the results of a small study of survival in cancer patients 
after a surgical procedure to remove the tumor. Ten subjects were recruited 
and enrolled at the time of their surgery, during the period from Jan. 1, 2000, 
to the end of Dec. 31, 2001 (two years of enrollment). They were then fol-
lowed until they died or until the conclusion of the study on Dec. 31, 2006 



316 Part V: Analyzing Survival Data 

(five years of additional observation after the last enrollment). Each subject 
has a horizontal timeline that starts on the date of surgery and ends with 
either the death date or the censoring date.

 

Figure 22-1: 
Survival of 

ten subjects 
following 

surgery for 
cancer.

 
 Illustration by Wiley, Composition Services Graphics

Six of the ten subjects (#1, 2, 4, 6, 9, and 10) died during the course of the 
follow-up study; two subjects (#5 and 7) were lost to follow-up at some point 
during the study, and two subjects (#3 and 8) were still alive at the end of the 
study. So this study has four subjects with censored survival times.

So how do you handle censored data like this? The following sections explain 
the right and wrong ways to proceed.

Dealing with censored data the right way
 Statisticians have worked out the proper techniques to utilize the partial 

information contained in censored observations. I describe two of the most 
popular techniques later in this chapter — the life-table method and the 
Kaplan-Meier (K-M) method. To understand these methods, you need to 
understand two fundamental concepts — hazard and survival:

 ✓ The hazard rate is the probability of dying in the next small interval of 
time, assuming the subject is alive right now.

 ✓ The survival rate is the probability of living for a certain amount of time 
after some starting time point.
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The first task when analyzing survival data is usually to describe how the 
hazard and survival rates vary with time. In this chapter, I show how to esti-
mate the hazard and survival rates, and how to summarize them as tables 
and display them as graphs.

Most of the larger statistical packages (such as those in Chapter 4) provide 
the kinds of calculations I describe, so you may never have to work directly 
with a life table or perform a Kaplan-Meier calculation. But it’s almost impos-
sible to understand any aspect of survival analysis, from simple descriptive 
summaries to advanced analytical techniques, without first understanding 
how these two methods work.

Dealing with censored data the wrong way
 Here are two ways not to handle censored survival data:

 ✓ You shouldn’t exclude subjects with a censored survival time from any 
survival analysis.

 ✓ You shouldn’t impute (replace) the censored (last-seen) date with some 
reasonable substitute value. One commonly used imputation scheme is 
to replace a missing value with the last observed value for that subject 
(called last observation carried forward, or LOCF imputation). So you may 
be tempted to set the death date to the last-seen date for a subject who 
didn’t die during the observation period.

These techniques for dealing with missing data don’t work for censored data. 
You can see why in Figure 22-2, in which the timelines for all the subjects 
have been slid to the left, as if they all had their surgery on the same date. 
The time scale now shows survival time (in years) after surgery instead of 
chronological time.

If you simply exclude all subjects with censored death dates from your 
analysis, you may be left with too few analyzable subjects (there are only six 
uncensored subjects in this example), which weakens (underpowers) your 
study. Worse, it will also bias your results in subtle and unpredictable ways.

Using the last-seen date in place of the death date for a censored observation 
may seem like a legitimate use of LOCF imputation, but it’s not. It’s equivalent 
to assuming that any subject who isn’t known to have died must have died 
immediately after the last-contact date. But this assumption isn’t reasonable — 
some subjects may live many years beyond the date you last saw them. Simply 
substituting last-seen dates for missing death dates will bias your results 
toward shorter survival times.

The problem is that a censored observation time isn’t really missing; it’s just 
not completely known. If you know that a person was last seen alive three 
years after treatment, you have partial information for that patient. You don’t 
know exactly what the patient’s true survival time is, but you do know that 
it’s at least three years.
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Figure 22-2: 
Survival 

times from 
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Looking at the Life-Table Method
To estimate survival and hazard rates in a population from a set of observed 
survival times, some of which are censored, you must combine the information 
from censored and uncensored observations properly. How do you do that? 
First, forget about trying to get survival estimates simply by dividing the number 
of subjects alive at a certain time point by the total number of subjects in the 
study. That approach fails to account properly for the censored observations.

Instead, you have to think of the process in terms of a series of small slices of 
time, and think of the probability of making it through each time slice, assum-
ing that the subject is alive at the start of that slice. The cumulative survival 
probability can then be obtained by successively multiplying all these indi-
vidual time-slice survival probabilities together. For example, to survive three 
years, first the subject has to make it through Year 1, then she has to make 
it through Year 2, and then she has to make it through Year 3. The probabil-
ity of making it through all three years is the product of the probabilities of 
making it through Year 1, Year 2, and Year 3.

These calculations can be laid out very systematically in a life table, sometimes 
called an actuarial life table because of its early use by insurance companies. 
The calculations involve only addition, subtraction, multiplication, and division 
and are simple enough to do by hand (which is how people did them before 
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computers came along). They can also be set up very easily in a spreadsheet, 
and many life-table templates are freely available for Excel and other spread-
sheet programs.

The following sections explain how to create, interpret, and graph informa-
tion from a life table.

Making a life table
To create a life table from your survival-time data, first break the entire range 
of survival times into convenient slices (months, quarters, or years, depend-
ing on the time scale of the event you’re studying). You should try to have 
at least five slices; otherwise, your survival and hazard estimates will be 
too coarse to show any useful features. Having very fine slices doesn’t hurt 
the calculations, although the table will have more rows and may become 
unwieldy. For the survival times shown in Figure 22-2, a natural choice would 
be to use seven one-year time slices.

Next, count how many people died during each slice and how many were 
censored (that is, last seen alive during that slice, either because they became 
lost to follow-up or were still alive at the end of the study). From Figure 22-2, 
you see that

 ✓ During the first year after surgery, one subject died (#1), and one sub-
ject was censored (#5, who was lost to follow-up).

 ✓ During the second year, nothing happened (no deaths, no censoring).

 ✓ During the third year, two subjects died (#4 and 9), and none were 
 censored.

Continue tabulating deaths and censored times for the fourth through sev-
enth years, and enter these counts into the appropriate cells of a spread-
sheet like the one shown in Figure 22-3:

 ✓ Put the description of the time interval that defines each slice into 
Column A.

 ✓ Enter the total number of subjects alive at the start into Column B, in the 
0–1 yr row.

 ✓ Enter the counts of people who died within each time slice into 
Column C (Died).

 ✓ Enter the counts of people who were censored during each time slice 
into Column D (Last Seen Alive). Some statisticians prefer to split the 
censored subject counts into two separate columns — one for those 
lost to follow-up, and another for those still alive at the end of the study. 
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This practice makes the table a little more informative but isn’t really 
necessary, because only the total number of censored subjects in each 
interval is used in the calculations. So it’s a matter of personal prefer-
ence; in this example, I use a single column for all censored counts.

 

Figure 22-3: 
A life table 
to analyze 

the sur-
vival times 

shown in 
Figure 22-2.
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After you’ve entered all the counts, the spreadsheet will look like Figure 22-3. 
Then you perform the simple calculations shown in the “Formula” row at 
the top of the spreadsheet to generate the numbers in all the other cells 
of the table. In the following sections, I go through all the life-table calcula-
tions for this example, column by column.

 I go through these calculations step by step to show you how they work, but 
you should never actually do these calculations yourself. Instead, put the 
formulas into the cells of a spreadsheet program so that it can do the calcula-
tions for you. Of course, if you use a preprogrammed life-table spreadsheet 
(which is even better), all the formulas will already be in place.

Columns B, C, and D
Column B shows the number of subjects known to be alive at the start of 
each year after surgery. This is equal to the number of subjects alive at 
the start of the preceding year minus the number of subjects who died 
(Column C) or were censored (Column D) during the preceding year. Here’s 
the formula, written in terms of the column letters: B for any year = B – C – D 
from the preceding year.

Here’s how this process plays out in Figure 22-3:

 ✓ Out of the ten subjects alive at the start, one died and one was last seen 
alive during the first year, so eight subjects (10 – 1 – 1) are known to still 
be alive at the start of the second year. The missing subject (#5, who 
was lost to follow-up during the first year) may or may not still be alive, 
so that censored subject isn’t counted in any subsequent years.
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 ✓ Nobody died or was last seen alive during the second year, so eight sub-
jects are still known to be alive at the start of the third year.

 ✓ Calculations continue the same way for the remaining years.

Column E
Column E shows the number of subjects “at risk for dying” during each year. 
You may guess that this is the number of people alive at the start of the interval, 
but there’s one minor correction. If any people were censored during that year, 
then they weren’t really “available to die” (to use an awful expression) for the 
entire year. If you don’t know exactly when, during that year, they became cen-
sored, then it’s reasonable to “split the difference” and consider them at risk for 
only half the year. So the number at risk can be estimated as the number alive 
at the start of the year, minus one-half of the number who became censored 
during that year, as indicated by the formula for Column E: E = B – D/2.

Here’s how this formula works in Figure 22-3:

 ✓ Ten people were alive at the start of Year 1, and one subject was cen-
sored during Year 1, so there were, in effect, only 9.5 people at risk of 
dying during Year 1 (1 divided by 2 is 0.5; subtract 0.5 from 10 to get 9.5).

 ✓ Eight people were alive at the start of Year 2, with none being censored 
during Year 2, so all eight people were at risk during Year 2.

 ✓ Calculations continue in the same way for the remaining years.

Column F
Column F shows the probability of dying during each interval, assuming 
the subject has survived up to the start of that interval. This is simply the 
number of people who died divided by the number of people at risk during 
each interval, as indicated by the formula for Column F: F = C/E.

Here’s how this formula works in Figure 22-3:

 ✓ For Year 1, one death out of 9.5 people at risk gives a 1/9.5, or 0.105 
probability of dying during Year 1.

 ✓ Nobody died in Year 2, so the probability of dying during Year 2 (assum-
ing the subject has already survived Year 1) is 0.

 ✓ Calculations continue in the same way for the remaining years.

Column G
Column G shows the probability of surviving during each interval, assuming 
the subject has survived up to the start of that interval. Surviving means not 
dying, so the probability of surviving is simply 1 – the probability of dying, as 
indicated by the formula for Column G: G = 1 – F.
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Here’s how this formula works out in Figure 22-3:

 ✓ The probability of dying in Year 1 is 0.105, so the probability of surviving 
in Year 1 is 1 – 0.105, or 0.895.

 ✓ The probability of dying in Year 2 is 0.000, so the probability of surviving 
in Year 2 is 1 – 0.000, or 1.000.

 ✓ Calculations continue in the same way for the remaining years.

Column H
Column H shows the cumulative probability of surviving from the time of the 
operation all the way through the end of this time slice. To survive from the 
time of the operation through the end of any given year (year N), the subject 
must survive each of the years from Year 1 through Year N. Because surviv-
ing each year is an independent accomplishment, the probability of surviv-
ing all N of the years is the product of the individual years’ probabilities. So 
Column H is a “running product” of Column G; that is, the value of Column H 
for Year N is the product of the first N values in Column G.

Here’s what this looks like in Figure 22-3:

 ✓ For Year 1, H is the same as G: a 0.895 probability of surviving one year.

 ✓ For Year 2, H is the product of G for Year 1 times G for Year 2; that is, 
0.895 × 1.000, or 0.895.

 ✓ For Year 3, H is the product of the Gs for Years 1, 2, and 3; that is, 0.895 × 
1.000 × 0.750, or 0.671.

 ✓ Calculations continue in the same way for the remaining years.

Putting everything together
Figure 22-4 shows the spreadsheet with the results of all the preceding 
 calculations.

 

Figure 22-4: 
Life-table 

analysis of 
sample sur-

vival data.
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 It’s also possible to add another couple of columns to the life table to obtain 
standard errors and confidence intervals for the survival probabilities. The 
formulas aren’t very complicated (they’re based on the binomial distribution, 
described in Chapter 25), but I’ve omitted them from this simple example. The 
SEs are calculated for each year’s survival probability and then combined 
according to the propagation-of-error rules (see Chapter 11) to get the SEs for 
the cumulative survival probabilities. Approximate CIs are then calculated as 
1.96 SEs above and below the survival probability.

Interpreting a life table
 Figure 22-4 contains the hazard rates (in Column F) and the cumulative sur-

vival probabilities (in Column H) for each year following surgery, based on 
your sample of ten subjects. Here are a few features of a life table that you 
should be aware of:

 ✓ The sample hazard and survival values obtained from a life table are 
only sample estimates (in this example, at 1-year time slices) of the true 
population hazard and survival functions.

 ✓ The slice widths are often the same for all the rows in a life table (as 
they are in this example), but they don’t have to be. They can vary, per-
haps being wider at greater survival times.

 ✓ The hazard rate obtained from a life table is equal to the probability 
of dying during each time slice (Column F) divided by the width of the 
slice, so the hazard rate for the first year would be expressed as 0.105 
per year, or 10.5 percent per year.

 ✓ The cumulative survival probability, in Column H, is the probability of sur-
viving from the operation date through to the end of the interval. It has no 
units, and it can be expressed as a fraction or as a percentage. The value 
for any time slice applies to the moment in time at the end of the interval.

 ✓ The cumulative survival probability is always 1.0 (100 percent) at time 0 
(in this example, the time of surgery). This initial value isn’t shown in 
the table.

 ✓ The cumulative survival function decreases only at the end of an interval 
that has at least one observed death. Censored observations don’t cause 
a drop in the estimated survival, although they do influence the size of 
the drops when subsequent events occur (because censored events 
reduce the number of subjects at risk, which is used in the calculation of 
the death and survival probabilities).

 ✓ If an interval contains no events at all (no deaths and no censored 
subjects), like the second year (1–2 years) row in the table, it has no 
effect whatsoever on the calculations. All subsequent values for B and E 
through H remain the same as if that row had never been in the table.
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Graphing hazard rates and survival 
 probabilities from a life table
Graphs of hazard rates and survival probabilities can be prepared directly 
from the results of a life table calculation using almost any spreadsheet or 
program that can make graphs from numerical data. Figure 22-5 illustrates 
the way these results are typically presented.

 ✓ Figure 22-5a is a graph of hazard rates. Hazard rates are often graphed 
as bar charts, because the hazard rates are calculated for (and pertain 
to) each time slice in a life table.

 ✓ Figure 22-5b is a graph of survival probabilities. Survival values are 
usually graphed as stepped line charts, where the survival value calcu-
lated in each row of a life table “takes effect” at the end of that row’s 
time slice. You might think it makes more sense to “connect the dots” 
with straight-line segments that descend gradually during each year 
rather than drop suddenly at the end of each year. (I certainly thought 
so in my early days!) But statisticians have good reasons for graphing 
survival “curves” as step charts, and that’s how they’re always shown.

 

Figure 22-5: 
Hazard 

function (a) 
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Digging Deeper with the  
Kaplan-Meier Method

Using very narrow time slices doesn’t hurt life-table calculations. In fact, you 
can define slices so narrow that each subject’s survival time falls within its 
own private little slice. With N subjects, N rows would have one subject each; 
All the rest of the rows would be empty. And because empty rows don’t affect 
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the life-table calculations, you can delete them entirely, leaving a table with 
only N rows, one for each subject. (If you happen to have two or more sub-
jects with exactly the same survival or censoring time, it’s okay to put each of 
the subjects in a separate row.)

The life-table calculations work fine with only one subject per row and pro-
duce what’s called Kaplan-Meier (K-M) survival estimates. You can think of the 
K-M method as a very fine-grained life table or a life table as a grouped K-M 
calculation.

A K-M worksheet for the survival times shown in Figure 22-2, based on the 
one-subject-per-row idea, looks like Figure 22-6. It’s laid out much like the 
usual life-table worksheet in Figure 22-5 but with a few differences in the raw 
data cells and minor differences in the calculations:

 ✓ Instead of a column identifying the time slices, there are two columns 
(A and B) identifying the subject and the survival or censoring time, in 
order from the shortest time to the longest.

 ✓ Instead of two columns containing the number of subjects who died and 
the number of subjects who were censored in each interval, you need 
only one column (C) indicating whether or not the subject in that row 
died. You use 1 if the subject died and 0 if the subject was censored 
(alive at the end of the study or lost to follow-up).

 ✓ The Alive at Start column (D) now decreases by 1 for each subject.

 ✓ The At Risk column in Figure 22-5 isn’t needed; the probability can be 
calculated from the Alive at Start column. That’s because if the subject 
is censored, the probability of dying is calculated as 0, regardless of the 
value of the denominator.

 ✓ The probability of dying (Column E) is calculated as E = C/D; that is, by 
dividing the “Died” indicator (1 or 0) by the number of subjects alive at 
that time.

 ✓ The probability of surviving and the cumulative survival (Columns F 
and G) are calculated exactly as in the life-table method.

Figure 22-7 shows graphs of the K-M hazard and survival estimates from 
Figure 22-6. These charts were created using the R statistical software, but 
most statistics software that performs survival analysis can create graphs 
similar to this. The K-M survival curve in Figure 22-7b is now more fine-
grained (has smaller steps) than the life-table survival curve in Figure 22-5b, 
because the step curve now has a drop at every time point at which a sub-
ject died (0.74 years for Subject 1, 2.27 years for Subject 9, 2.34 years for 
Subject 4, and so on).
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 While the K-M survival curve tends to be smoother than the life-table survival 
curve, just the opposite is true for the hazard curve. In Figure 22-7a, each sub-
ject has his own very thin bar, and the resulting chart isn’t easy to interpret.

Heeding a Few Guidelines for Life Tables 
and the Kaplan-Meier Method

Most of the larger statistical packages (SPSS, SAS, OpenStat, R, and so on; see 
Chapter 4) can perform life-table and Kaplan-Meier calculations for you and 
directly generate survival curves. The process is usually quite simple; you 
just have to provide the program with two variables: the survival time for 
each subject, and an indicator of whether that survival time represents the 
actual time to death or is a censored time. But you still have several golden 
opportunities to mess things up royally if you’re not careful. Here are some 
pointers for setting up your data and interpreting the results properly.
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Recording survival times the right way
 When dealing with intervals between time points, you should enter the actual 

dates and times of time points and let the computer calculate the intervals 
between those time points. And when recording the raw data that will ulti-
mately be used in a survival analysis, it’s best to enter all the relevant dates 
and times — diagnosis, start of therapy, end of therapy, start of improvement 
or remission, relapse, event (each event if it’s a recurring one), death, last 
seen date, and so on. Then you’ll be able to calculate intervals between any 
starting point (diagnosis or treatment, for example) and any event (such as 
remission, relapse, death, and so forth).

Dates (and times) should be recorded to suitable precision. If you’re dealing 
with things that happen over the course of months or years (like cancer), you 
may get by recording dates to the nearest month. But if you’re interested in 
intervals that span only a few days (such as studying treatments for postop-
erative ileus), you should record dates and times to the nearest hour. When 
studying duration of labor, you should record time to the nearest minute. You 
can even envision laboratory studies of intracellular events where time would 
have to be recorded with millisecond — or even microsecond — precision!

Most modern spreadsheet, database, and statistical software lets you enter 
dates and times into a single variable (or a single cell of the spreadsheet). 
This is much better than having two different variables (or using two col-
umns in a spreadsheet) — one for date and one for time of day. Having a 
single date/time variable lets the computer perform calendar arithmetic — 
you can obtain intervals between any two events by simple subtraction of the 
starting and ending date/time variables.

Recording censoring information correctly
People usually get the survival time variable right, but they may miscode 
the censoring indicator. The software may want you to use 0 or 1, or any 
two different numerical or character codes to distinguish actual from cen-
sored observations. The most common way is to use 1 if the event actually 
occurred (the subject died), and 0 if the observation is censored. But you 
might think that a variable that’s referred to as the “censored” indicator 
should be 1 if the observation is censored and 0 if it’s not censored.

Bad news: If you code the censoring indicator one way and the software is 
expecting it another way, the program may mistakenly process all the cen-
sored observations as uncensored and vice versa. Worse news: You won’t 
get any warning or error message from the program; you’ll only get incor-
rect results. Worst news: Depending on how many censored and uncen-
sored observations you have, the survival curve may not display any sign of 
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trouble — it may look like a perfectly reasonable survival curve for your data, 
even though it’s completely wrong.

 You have to check the software manual very carefully to make sure you code 
the censoring indicator the right way. Also, check the program’s output for 
the number of censored and uncensored observations and compare them to 
your own manual count of censored and uncensored subjects in your data file.

Interpreting those strange-looking 
 survival curves
Survival curves (like those shown in Figures 22-5 and 22-7) look different from 
most other kinds of graphs you see in biological books and publications. Not 
only is their stepped appearance unusual, but they also contain several kinds 
of “artifacts” that can easily confuse people who aren’t familiar with life-table 
and Kaplan-Meier calculations.

 ✓ Drops and ticks: The drops in a K-M survival curve occur at every time 
point where there’s an observed death and only at those time points. 
The curves do not drop at the times of censored observations. Most 
statistical software places small, vertical tick marks along the survival 
curve at every censored time point, so that the graph visibly displays all 
the censored (ticks) and uncensored (drops) data points.

 ✓ Indistinguishable curves: When several survival curves are plotted 
on the same chart, they can be very difficult to tell apart, especially if 
they’re close together or cross over each other. The individual curves 
must always be drawn using different colors, different line-widths, or dif-
ferent line-types (solid, dashed, dotted, and so on), or they’ll be almost 
impossible to distinguish.

 ✓ Drastic drops in survival: Because the magnitude of each drop in 
survival depends on the number at risk (in the denominator), which 
decreases toward the bottom of the life-table or K-M calculation, the 
size of the drops becomes larger at the right side of the survival chart. 
An extreme “artifact” of this type occurs if the subject with the longest 
observed time to event happens to be uncensored (for example, the 
subject died), in which case the curve will drop to zero, which may be 
completely misleading.

 ✓ Deceptive precision: Survival curves are usually less precise than they 
appear to be, and this can lead to your misjudging whether the curves 
for two or more groups of subjects are significantly different from each 
other. I say more about that in Chapter 23, dealing with how to compare 
survival curves.
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Doing Even More with Survival Data
Besides giving you an idea of what a true population survival function looks 
like (the fraction of subjects surviving over the course of time), life-table 
and Kaplan-Meier survival curves let you estimate several useful numbers 
that describe survival. Figure 22-8 shows the same K-M survival curve as 
Figure 22-7b, but with the Y axis labeled as percent (rather than fraction) 
 surviving, and with annotations showing how to estimate

 ✓ The median (or other centile) survival time: The survival curve in 
Figure 22-8 declines to 50 percent survival at 5.18 years, so you can say 
that the median survival after surgery for this cancer is about 5.2 years. 
Similarly, the graph indicates that 80 percent of subjects are still alive 
after about 2.2 years.

 ✓ The five-year (or other time value) survival rate: You can estimate from 
Figure 22-8 that the five-year survival rate is 53 percent, and the 2-year 
survival rate is about 89 percent.

 

Figure 22-8:  
Useful 

things you 
can get from 
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curve.
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 Besides preparing hazard and survival curves, you may want to do other 
things with your survival data:

 ✓ Compare survival between two or more groups of subjects. You may 
want to test whether subjects receiving a certain therapy survive longer 
than subjects receiving a placebo, whether males survive longer than 
females, or whether survival decreases with increasing stage or grade of 
disease. You can perform life-table or Kaplan-Meier calculations on each 
subgroup of subjects and then plot all the survival curves on the same 
graph. In Chapter 23, I describe how to test for significant differences in 
survival between two or more groups of subjects.

 ✓ Determine whether survival is affected by other factors (called covari-
ates), such as stage of disease, subject age, prior medical history, and 
so on. And if so, you may want to quantify the size of that effect. You 
may also want to mathematically compensate for the effects of other 
variables when you’re comparing survival between treatment groups. 
For other types of outcome data, this compensation is usually done by 
regression analysis, and you’ll be happy to know that there’s a special 
kind of regression designed just for survival outcomes. I describe it in 
Chapter 24.

 ✓ Prepare a customized prognosis chart — one that shows the expected 
survival curve for a particular person based on such factors as age, 
gender, stage of disease, and so forth. Survival regression can also gen-
erate these customized survival curves; I show you how in Chapter 24.



Chapter 23

Comparing Survival Times
In This Chapter
▶ Using the log-rank test to compare two groups
▶ Thinking about more complicated comparisons
▶ Calculating the necessary sample size

T 
he life table and Kaplan-Meier survival curves described in Chapter 22 
are ideal for summarizing and describing the time to the first (or only) 

occurrence of some event, based on times observed in a sample of subjects. 
They correctly incorporate censored data (when a subject isn’t observed long 
enough to experience the event). Animal studies or human studies involving 
endpoints that occur on a short time-scale (like duration of labor) might yield 
totally uncensored data, but most clinical studies will contain at least some 
censored observations.

In biological research (and especially in clinical trials), you often want to 
compare survival times between two or more groups of subjects. This chap-
ter describes an important method — the log-rank test — for comparing sur-
vival between two groups and explains how to calculate the sample size you 
need to have sufficient statistical power (see Chapter 3) when performing 
this test. The log-rank test can be extended to handle three or more groups of 
subjects, but I don’t describe that test in this book.

 In this chapter, as in Chapters 22 and 24, I use the term survival and refer to 
the outcome event as death, but everything I say applies to any kind of out-
come event.

 A fair bit of ambiguity is associated with the name log-rank test. This proce-
dure is also referred to as the Mantel-Cox test, a stratified Cochran-Mantel-
Haenszel test, the Mantel-Haenszel test for survival data, the Generalized 
Savage’s test, and the “Score Test” from the Cox Proportional Hazards model. 
(And I may have missed a few!) The log-rank test has also been extended in 
various ways; some of these variants have their own name (the Gehan-Breslow 
test, and Peto and Peto’s modification of the Gehan test, among others). And 
different implementations of the log-rank test may calculate the test statistic 
differently, resulting in slightly different p values. In this chapter, I describe 
the most commonly used form of the log-rank test.
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 If you’re lucky enough to have no censored observations in your data, you can 
skip most of this chapter. You simply have two (or more) groups of numbers 
(survival times) that you want to compare. One option is to use an unpaired 
Student t test to see whether one group has a significantly longer mean survival 
than the other (or an ANOVA if you have three or more groups), as described 
in Chapter 12. But because survival times are very likely to be non-normally 
distributed, it’s safer to use a nonparametric test — you can use the Wilcoxon 
Sum of Ranks or Mann-Whitney U test to compare the median survival time 
between two groups, or the Kruskal-Wallis test for three or more groups.

Suppose you conduct a trial of a cancer drug with 90 subjects (randomized 
so that 60 receive the drug and 30 receive a placebo), following them for a 
total of five years and recording when each subject dies or is censored. You 
perform a life-table analysis on each group of subjects (drug and placebo) 
as described in Chapter 22 and graph the results, getting the survival curves 
shown in Figure 23-1. (The two life tables also provide the summary informa-
tion you need for the log-rank test.)

 

Figure 23-1: 
Survival 
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The two survival curves look different — the drug group seems to be show-
ing better survival than the placebo group. But is this apparent difference 
real, or could it be the result of random fluctuations only? The log-rank test 
answers this question.

Comparing Survival between Two 
Groups with the Log-Rank Test

The log rank test can be performed using individual-subject data or on data 
that has been summarized into a life-table format. I first describe how to run a 
log-rank test with statistical software; then I describe the log-rank test calcula-
tions in detail, as you might carry them out using a spreadsheet like Excel.
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Understanding what the  
log-rank test is doing
Basically, the log-rank test asks whether deaths are split between the two 
groups in the same proportion as the number of at-risk subjects in the two 
groups. The difference between the observed and expected number of deaths 
in each time slice for one of the groups (it doesn’t matter which one) is 
summed over all the time slices to get the total excess deaths for that group. 
The excess death sum is then scaled down — that is, divided by an estimate 
of its standard deviation. (I describe later in this chapter how that standard 
deviation estimate is calculated.) The scaled-down excess deaths sum is a 
number whose random sampling fluctuations should follow a normal distri-
bution, from which a p value can be easily calculated.

Don’t worry if the preceding paragraph makes your head spin; it’s just meant 
to give you a general sense of the rationale for the log-rank test.

Running the log-rank test on software
 Most commercial statistical software packages (like those in Chapter 4) can 

perform a log-rank test. You first organize your data into a file consisting of 
one record per subject, having the following three variables:

 ✓ A categorical variable that identifies which group each subject belongs to

 ✓ A numerical variable containing the subject’s survival time (either the 
time to the event or the time to the end of observation)

 ✓ A variable that indicates the subject’s status at the end of the survival time 
(usually 1 if the event was observed; 0 if the observation was censored)

You identify these three variables to the program, either by typing the vari-
able names or by picking them from a list of variables in the data file.

The program should produce a p value for the log-rank test. If this p value is 
less than 0.05, you can conclude that the two groups have significantly differ-
ent survival.

In addition to the p value, the program may produce the median survival 
time for each group as well as confidence intervals for the median times and 
the difference in median times between groups. It may also offer to produce 
analyses and graphs that assess whether your data is consistent with the 
hazard proportionality assumption that I describe later in this chapter. You 
should get these extra outputs if they’re available. Consult the program’s 
documentation for information about using the program’s output to assess 
hazard proportionality.
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Looking at the calculations
It’s generally not a good idea to do log-rank tests by hand or with a home-
written spreadsheet; things can go wrong in too many places. But, as with 
many tests that I describe in this book, you’ll have a better appreciation of 
the strengths and limitations of the log-rank test if you understand how it 
works. So in this section, I describe how the log-rank calculations can be car-
ried out in a spreadsheet environment.

The log-rank test utilizes some of the information from the life tables you pre-
pared in order to graph the survival of the two groups in Figure 23-1. The test 
needs only the number of subjects at risk and the number of observed deaths 
for each group at each time slice. Figure 23-2 shows a portion of the life tables 
that produced the curves shown in Figure 23-1, with the data for the two treat-
ment groups displayed side by side. The Drug group’s results are in columns 
B through E, and the Placebo group’s results are in columns F through I.

 

Figure 23-2: 
Part of 

life-table 
calculations 

for two 
groups of 
subjects.

 
 Illustration by Wiley, Composition Services Graphics

The calculations for the log-rank test are carried out in a second spreadsheet 
(as shown in Figure 23-3), with the following columns:

 ✓ Column A identifies the time slices, consistent with Figure 23-2.

 ✓ The log-rank test needs only the At Risk and Died columns for each 
group. Columns B and C of Figure 23-3 are taken from columns E and C, 
respectively, of Figure 23-2. Columns D and E of Figure 23-3 are taken 
from Columns I and G, respectively, of Figure 23-2.

 ✓ Columns F and G show the total number of subjects at risk and the total 
number of subjects who died; they’re obtained by combining the corre-
sponding columns for the two treatment groups.

 ✓ Column H shows Group 1’s percentage of the total number of at-risk 
 subjects.

 ✓ Column I shows the number of deaths you’d expect to see in Group 
1 based on apportioning the total number of deaths (in both groups) 
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by Group 1’s percentage of total at-risk subjects. For the 0–1 year row, 
Group 1 had about 2/3 of the 89 subjects at risk, so you’d expect it to 
have about 2/3 of the nine deaths.

 ✓ Column J shows the excess number of actual deaths compared to the 
expected number for Group 1.

 ✓ Column K shows the variance (the square of the standard deviation) of 
the excess deaths. It’s obtained from a rather complicated formula that’s 
based on the properties of the binomial distribution (see Chapter 25):

  V = DT(N1/NT)(N2/NT)(NT – DT)/(NT – 1)

  For the first time slice (0–1 yr), this becomes: V = 9(59.5/89)(29.5/89)
(89 – 9)/(89 – 1), which equals approximately 1.813.

  N refers to the number of subjects at risk, D refers to deaths, the sub-
scripts 1 and 2 refer to groups 1 and 2, and T refers to the total of both 
groups combined.

 

Figure 23-3:  
Basic 

log-rank 
calcula-

tions (don’t 
try this 

at home, 
kids!).

 
 Illustration by Wiley, Composition Services Graphics

Next, you add up the excess deaths in all the time slices to get the total 
number of excess deaths for Group 1 compared to what you would have 
expected if the deaths had been distributed between the two groups in the 
same ratio as the number of at-risk subjects.

Then you add up all the variances, because the variance of the sum of a set 
of numbers is the sum of the variances of the individual numbers (from the 
error-propagation rules given in Chapter 11).

Then you divide the total excess deaths by the square root of the total vari-
ance to get a test statistic called Z:

The Z value is approximately normally distributed, so you can obtain a p 
value from a table of the normal distribution or from an online calculator. For 
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the data in Figure 23-3, , which is 2.19, which corresponds to 
a p value of 0.028, so you can conclude that the two groups have significantly 
different survival.

Note: By the way, it doesn’t matter which group (drug or placebo) you call 
Group 1 in these calculations; the final results are the same either way.

Assessing the assumptions
Like all statistical tests, the log-rank test assumes that you studied an unbi-
ased sample from the population you’re trying to draw conclusions about. 
It also assumes that any censoring that occurred was due to circumstances 
unrelated to the efficacy of the treatment (for example, subjects didn’t drop 
out of the study because the drug made them sick).

 One very important assumption is that the two groups have proportional haz-
ards. I describe these hazards in more detail in Chapter 24, but for now the 
important thing to know is that the survival curves of the two groups must 
have generally similar shapes, as in Figure 23-4. (Flip to Chapter 22 for more 
about survival curves.)

 

Figure 23-4: 
Proportional 
(a) and non-
proportional 
(b) hazards 

relationships 
between 

two survival 
curves.

 
 Illustration by Wiley, Composition Services Graphics

The log-rank test looks for differences in overall survival time; it’s not good at 
detecting differences in shape between two survival curves with similar over-
all survival time, like the two curves shown in Figure 23-4b (which actually 
have the same median survival time). When two survival curves cross over 
each other, the excess deaths are positive for some time slices and negative 
for others, so they tend to cancel out when they’re added up, producing a 
smaller test statistic (z value), and larger (less significant) p values. 
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Considering More Complicated 
Comparisons

The log-rank test is good for comparing survival between two or more groups 
of subjects. But it doesn’t extend well to more complicated situations. What if 
you want to do one of the following?

 ✓ Test whether survival depends on age or some other continuous variable

 ✓ Test the simultaneous effect of several variables, or their interactions, 
on survival

 ✓ Correct for the presence of confounding variables or other covariates

In other areas of statistical testing, such situations are usually handled by 
regression techniques, so it’s not surprising that statisticians have developed 
a special type of regression to deal with survival outcomes with censored 
observations. I describe this special kind of regression in Chapter 24.

Coming Up with the Sample Size  
Needed for Survival Comparisons

I introduce power and sample size in Chapter 3. Calculating the sample size 
for survival comparisons is complicated by several things:

 ✓ The need to specify an alternative hypothesis: This hypothesis can 
take the form of a hazard ratio, described in Chapter 24 (the null hypoth-
esis is that the hazard ratio = 1), or the difference between two median 
survival times.

 ✓ The effect of censoring: This effect can depend on things like accrual 
rate, dropout rate, and the length of additional follow-up after the last 
subject has been enrolled into the study.

 ✓ The shape of the survival curves: This shape is often assumed, for the 
sake of the sample-size calculations, to be a simple exponential curve, 
but that may not be realistic.

 I recommend using software like the free PS (Power and Sample Size 
Calculation; see Chapter 4) to do these calculations, because it can take a lot 
of these complications into account.

Suppose you’re planning a study to compare a drug to a placebo. You’ll 
have two equal-size groups, and you expect to enroll subjects for one year 
and then continue to follow the subjects’ progress for another two years 
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after enrollment is complete. You expect the median placebo time to be 20 
months, and you think the drug should extend this to 30 months. If it truly 
does extend survival that much, you want to have an 80 percent chance of 
getting p ≤ 0.05 when you compare drug to placebo using the log-rank test.

You set up the PS program as shown in Figure 23-5. Note that time must 
always be entered in the same units (months, in this example) in the various 
fields: the median survival times for the two groups (m1 and m2), the accrual 
interval (A), and the post-accrual follow-up period (F).

This tells you that you need to enroll 170 subjects in each group (a total of 
340 subjects altogether).

 Note that sample-size software often provides a brief paragraph describing the 
sample-size calculation, which you can copy and paste into your protocol (or 
proposal) document.

 

Figure 23-5: 
Sample-size 

calculation 
for compar-
ing survival 
times using 

the PS  
program.

 
 PS: Power and Sample Size Calculation by William D. Dupont



Chapter 24

Survival Regression
In This Chapter
▶ Knowing when to use survival regression
▶ Describing the concepts behind survival regression
▶ Running and interpreting the outcome of survival regression
▶ Peeking at prognosis curves
▶ Estimating sample size for survival regression

S 
urvival regression is one of the most commonly used techniques in 
biostatistics. It overcomes the limitations of the log-rank test (see 

Chapter 23) and lets you analyze how survival time is influenced by one or 
more predictors (the X variables), which can be categorical or numerical 
(see Chapter 7). In this chapter, I introduce survival regression: when to use 
it, its basic concepts, running it and interpreting the output, building progno-
sis curves, and figuring out the sample size you need.

Note: Because time-to-event data is so often applied to survival, where the 
event is death, I use the terms death and survival time in this chapter, but 
everything I say applies also to analyzing times to the first occurrence of 
any event, like death, stroke, hospitalization, response to treatment, and 
recurrence of illness. 

Knowing When to Use Survival Regression
In Chapter 22, I point out the special problems that come up when you can’t 
follow a subject long enough to observe a death (called censoring of data). In 
that chapter, I explain how to summarize survival data with life tables and 
the Kaplan-Meier method, and how to graph time-to-event data as survival 
curves. In Chapter 23, I describe the log-rank test, which you can use to com-
pare survival among a small number of groups — for example, drug versus 
placebo or four stages of cancer.
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But the log-rank test has its limitations:

 ✓ It doesn’t handle numerical predictors well. It compares survival 
among a small number of categories, but you may want to know how 
age (for example) affects survival. To use the log-rank test, you have to 
express the age as age-group categories (like 0–20, 21–40, 41–60, and so 
on) and compare survival among these categories. This test may be less 
efficient at detecting gradual trends across the whole age range.

 ✓ It doesn’t let you analyze the simultaneous effect of several predic-
tors. If you try to create subgroups of subjects for each distinct combi-
nation of categories for several predictors, you could have dozens or 
even hundreds of groups, most of which would have very few subjects. 
Suppose, for example, you have three predictors: stage of disease (four 
categories), age group (eight categories), and mode of treatment (five 
categories). There are a total of 4 × 8 × 5, or 160, possible groups — one 
for each distinct combination of levels for the three predictors. If you 
have 250 subjects, most groups have only one or two subjects in them, 
and many groups are empty.

 Use survival regression when the outcome (the Y variable) is a time-to-event 
variable, like survival time; this regression lets you do any (or all) of the 
 following:

 ✓ Determine whether there is a significant association between survival 
and one or more other variables

 ✓ Quantify the extent to which a variable influences survival, including 
testing whether survival is different between groups

 ✓ Adjust for the effects of confounding variables

 ✓ Generate a predicted survival curve (a prognosis curve) that is custom-
ized for any particular set of values of the predictor variables

Explaining the Concepts behind 
Survival Regression

Note: My explanation of survival regression has a little math in it, but noth-
ing beyond high school algebra. For generality, I describe multiple survival 
regression (more than one predictor), but everything I say also applies when 
you have only one predictor variable.

Most kinds of regression require you to write a formula to fit to your data. 
The formula is easiest to understand and work with when the predictors 
appear in the function as a linear combination in which each predictor 
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 variable is multiplied by a coefficient, and these terms are all added together 
(perhaps with another coefficient, called an intercept, thrown in), like this:  
y = c0 + c1x1 + c2x2 + c3x3. This linear combination can also have terms with 
higher powers (like squares or cubes) of the predictor variables, and it can 
have interaction terms (products of two or more predictors).

 Survival regression takes the linear combination and uses it to predict sur-
vival. But survival data presents some special challenges:

 ✓ Censoring: Censoring happens when the event doesn’t occur during 
the time you follow the subject. You need special methods (such as life 
tables, the Kaplan-Meier method, and the log-rank test; see Chapters 22 
and 23) to deal with this problem.

 ✓ Survival curve shapes: In some disciplines, such as industrial quality 
control, the times to certain kinds of events (like the failure of mechanical 
or electronic components) do tend to follow certain distribution func-
tions, like the Weibull distribution (see Chapter 25), pretty well. These 
disciplines often use a parametric form of survival regression, which 
assumes that you can represent the survival curves by algebraic formulas. 
Early biological applications of survival regression also used parametric 
models. But biological data tends to produce nonparametric survival 
curves whose shapes can’t be represented by any simple formulas.

Researchers wanted a hybrid, semi-parametric kind of survival regression: 
one that was partly nonparametric (didn’t assume any mathematical formula 
for the shape of the overall survival curve) and partly parametric (assumed 
that the predictors influence the shape of that curve according to a mathemat-
ical relationship). Fortunately, in 1972, a statistician named David Cox came 
up with just such a method, called proportional hazards (PH) regression. His 
original paper is one of the most widely cited publications in the life sciences, 
and PH regression is often simply called Cox regression. In the following sec-
tions, I list the steps for Cox PH regression and explain hazard ratios.

The steps of Cox PH regression
You can understand Cox PH regression in terms of several conceptual steps, 
which statistical software (like the programs in Chapter 4) carry out in an 
integrated way during the regression:

 1. Figure out the overall shape of the survival curve by the Kaplan-Meier 
method.

 2. Figure out how the predictor variables bend this curve upward or 
downward (how the predictors affect survival).

 3. Determine the values of the regression coefficients that make the pre-
dicted survival times best fit your observed data.
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Figuring out the baseline
Your software may define baseline survival function in one of two ways:

 ✓ The survival curve of an average subject: One whose value of each 
predictor is equal to the group average value for that variable. The 
average-subject baseline is easy to understand — it’s very much like the 
overall survival curve you get from a Kaplan-Meier calculation by using 
all the available subjects.

 ✓ The survival curve of a hypothetical zero subject: One whose value 
of each predictor is equal to 0. Some mathematicians prefer to use the 
zero-subject baseline because it makes some of their formulas simpler. 
But the zero-subject baseline corresponds to a hypothetical subject 
who can’t possibly exist in the real world. Have you ever seen a person 
whose age is 0, weight is 0, or cholesterol level is 0? Neither have I. The 
survival curve for such an impossible person is so far away from reality 
that it usually doesn’t even look like a survival curve.

 Luckily, the way your software defines its baseline function doesn’t affect 
regression coefficients, standard errors, hazard ratios, confidence intervals, p 
values, or goodness-of-fit measures, so you don’t have to worry about it. But 
you should be aware of the two alternative definitions if you plan to generate 
prognosis curves, because the formulas to generate them are slightly different 
for the two different kinds of baseline function.

Bending the baseline
 Now for the tricky part. How do you bend (flex) this baseline curve to 

express how survival may increase or decrease for different predictor values? 
Because survival curves always start at 1 (100 percent) at time 0, the bending 
process must leave this special point where it is. And the bending process 
must also leave a survival value of 0 unchanged. One very simple mathemati-
cal operation — raising a number to a power — can do the job: It leaves 1 at 1 
and 0 at 0, but smoothly raises or lowers all the values between 0 and 1.

You can see how this plays out when you look at a simple baseline function: 
a straight line. (No actual biological survival curve would ever be exactly 
a straight line, but this line makes for a nice, simple example.) Look at 
Figure 24-1a, which is simply a graph of the equation y = 1 – x.

Look what happens when you raise this straight line to various powers, 
which I refer to as h and show in Figure 24-1b:

 ✓ Squaring (h = 2) the y value for every point on the line always makes 
the values smaller (for example, 0.82 is 0.64), because the y values are 
always less than 1.
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 ✓ Taking the square root (h = 0.5) of the y value of every point on the line 
makes the y values larger (for example, the square root of 0.25 is 0.5).

 ✓ Both 12 and 10.5 remain 1, and 02 and 00.5 both remain 0, so those two 
ends of the line don’t change.

 

Figure 24-1: 
Bending a 

straight line 
into differ-

ent shapes 
by raising 

each point 
on the line 

to some 
power: h.

 
 Illustration by Wiley, Composition Services Graphics

Does the same trick work for a survival curve that doesn’t follow any particu-
lar algebraic formula? Yes, it does; look at Figure 24-2.

 ✓ Figure 24-2a shows a typical survival curve. It’s not defined by any alge-
braic formula; it exists simply as a table of values obtained by a life-table 
or Kaplan-Meier calculation.

 ✓ Figure 24-2b shows how the baseline survival curve is flexed by raising 
every baseline survival value to a power. You get the lower curve by 
squaring (h = 2) every baseline survival value; you get the upper curve 
by taking the square root (h = 0.5) of every baseline survival value. 
Notice that the two flexed curves keep all the distinctive zigs and zags of 
the baseline curve; every step occurs at the same time value as it occurs 
in the baseline curve.

	 •	The	lower	curve	represents	a	group	of	people	who	had	a	poorer	
survival outcome than those making up the baseline group. In 
other words, at any instant in time, they were somewhat more 
likely to die (had a greater hazard rate) than a baseline person at 
that same moment.

	 •	The	upper	curve	represents	subjects	who	had	better	survival	(had	
a lower hazard rate) than a baseline person at any given moment.
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Figure 24-2: 
Raising to 

a power 
works for 

survival 
curves, too.

 
 Illustration by Wiley, Composition Services Graphics

Because of the mathematical relationship between hazard (chance of dying 
at any instant in time) and survival (chance of surviving up to some point in 
time), it turns out that raising the survival curve to the h power is exactly 
equivalent to multiplying the hazard curve by the natural logarithm of h. 
Because every point in the hazard curve is being multiplied by the same 
amount — by Log(h) — raising a survival curve to a power is referred to as a 
proportional hazards transformation.

 But what should the value of h be? The h value varies from one person to 
another. Keep in mind that the baseline curve describes the survival of a per-
fectly average person, but no individual is completely average. You can think 
of every subject as having her very own personalized survival curve, based on 
her very own h value, that provides the best estimate of that subject’s chance 
of survival over time.

Seeing how predictor variables influence h
The final piece of the survival regression problem is to figure out how the 
predictor variables influence h, which influences survival. Any kind of regres-
sion finds the values of the coefficients that make the predicted values agree 
as much as possible with the observed values; likewise, Cox PH regression 
figures out the coefficients of the predictor variables that make the predicted 
survival curves agree as much as possible with the observed survival times 
of each subject.

 How does Cox PH determine these regression coefficients? The short answer 
is, “Don’t ask!” The longer answer is that, like all other kinds of regression, Cox 
PH is based on maximum likelihood estimation. You first build a big, compli-
cated expression for the probability of one particular person dying at any point 
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in time. This expression involves that person’s predictor values and the regres-
sion coefficients. Then you construct a bigger expression giving the likelihood 
of getting exactly the survival times that you got for all the subjects in your 
data set. And as if this isn’t already complicated enough, the expression has to 
deal with the complication of censored data. You then have to find the values 
of the regression coefficients that maximize this big likelihood expression. As 
with other kinds of regression, the calculations are far too difficult for any sane 
person to attempt by hand. Fortunately, computer software is available to do it 
for you.

Hazard ratios
Hazard ratios are among the most useful things you get from a Cox PH regres-
sion. Their role in survival regression is similar to the role of odds ratios in 
logistic regression (see Chapter 20), and they’re even calculated the same 
way — by exponentiating the regression coefficients:

 ✓ In logistic regression: Odds ratio = eRegression Coefficient

 ✓ In Cox PH regression: Hazard ratio = eRegression Coefficient

 Keep in mind that hazard is the chance of dying in any small period of time. 
Each predictor variable in a Cox PH regression has a hazard ratio that tells you 
how much the hazard increases in the relative sense (that is, by what amount 
it’s multiplied) when you increase the variable by exactly 1.0 unit. Therefore, 
a hazard ratio’s numerical value depends on the units in which the variable 
is expressed in your data. And for categorical predictors, the hazard ratio 
depends on how you code the categories.

For example, if a survival regression model in a study of emphysema sub-
jects includes cigarettes smoked per day as a predictor of survival, and if 
the hazard ratio for this variable comes out equal to 1.05, then a person’s 
chances of dying at any instant increase by a factor of 1.05 (5 percent) for 
every additional cigarette smoked per day. A 5 percent increase may not 
seem like much, but it’s applied for every additional cigarette per day. A 
person who smokes one pack (20 cigarettes) per day has that 1.05 multiplica-
tion applied 20 times, which is like multiplying by 1.0520, which equals 2.65. 
And a two-pack-per-day smoker’s hazard increases by a factor of 2.65 over a 
one-pack-per-day smoker, which means a 2.652 (roughly sevenfold) increase 
in the chances of dying at any instant, compared to a nonsmoker.

If you change the units in which you record smoking levels from cigarettes 
per day to packs per day (using units that are 20 times larger), then the cor-
responding regression coefficient is 20 times larger, and the hazard ratio is 
raised to the 20th power (2.65 instead of 1.05 in this example).



346 Part V: Analyzing Survival Data 

Running a Survival Regression
As with all statistical methods dealing with time-to-event data, your depen-
dent variable is actually a pair of variables:

 ✓ One variable is an event-occurrence indicator that’s one of the following:

	 •	Equal	to	1	if	the	event	was	known	to	occur	(uncensored)

	 •	Equal	to	0	if	the	event	didn’t	occur	during	the	observation	period	
(censored)

 ✓ One variable is the time-to-event, which is the time from the start of 
observation to either the occurrence of the event (if it did occur) or 
to the end of the observation (if the event wasn’t observed to occur). 
I describe time-to-event data in more detail in Chapter 22.

And as with all regression methods, you have one or more variables for the 
predictors. The rules for representing the predictor variables are the same as 
described in Chapter 19.

 ✓ For continuous numerical variables, choose units of a convenient 
 magnitude.

 ✓ For categorical predictors, carefully consider how you record the data 
provided to the software and what the reference level is.

You may not be sure which variables in your data to include as predictors in 
the regression. I discuss this model-building problem in Chapter 19; the same 
principles apply to survival regression.

After you assemble and properly code the data, running the program is 
no more complicated than running it for ordinary least-squares or logistic 
regression. You need to specify the variables in the regression model:

 1. Specify the two components of the outcome event:

 •	Time	to	event

	 •	Censoring	indicator

 2. Specify the predictor variables.

  Specify the reference level (see Chapter 23) for categorical predictors if 
the software lets you do that.

 Most software also lets you specify the kinds of output you want to see. You 
should always specify at least the following:

 ✓ Coefficients table, including hazard ratios and confidence intervals

 ✓ Tests of whether the hazard proportionality assumption is valid
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You may also want to see some or all of the following:

 ✓ Summary descriptive statistics on the data, including number of cen-
sored and uncensored observations, median survival time, and mean 
and standard deviation for each predictor variable in the model

 ✓ One or more measures of goodness-of-fit for the model

 ✓ Baseline survival function (as a table of values and as a survival curve)

 ✓ Baseline hazard function values (as a table and graph)

After you specify all the input to the program, click the Start button, and let 
the computer do all the work.

Interpreting the Output of  
a Survival Regression

Suppose you have conducted a long-term survival study of 200 cancer 
patients who were enrolled at various stages of the disease (1 through 4) 
and were randomized to receive either chemotherapy or radiation therapy. 
Subjects were followed for up to ten years, after which the survival data was 
summarized by treatment (Figures 24-3a and 24-3b for the two treatments) 
and by stage of disease.

It would appear, from Figure 24-3, that chemotherapy and greater stage of dis-
ease are both associated with poorer survival, but are these apparent effects 
significant? Proportional-hazards regression can tell you that, and more.

 

Figure 24-3: 
Kaplan-

Meier 
survival 
curves, 

by treat-
ment and 

by stage of 
 disease.

 
 Illustration by Wiley, Composition Services Graphics
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To run a proportional-hazards regression on the data from this example, you 
must provide the following data to the software:

 ✓ The time from treatment to death or censoring (a numerical variable 
Time, in years).

 ✓ The indicator of whether the subject died or was censored (a variable 
Status, set to 1 if the subject died or 0 if the subject was last seen alive).

 ✓ The treatment group (a categorical variable Tx, coded as Chemo or 
Radiation). In this example, I didn’t say which treatment was the refer-
ence level (see the discussion of reference levels in Chapter 19), so R 
took Chemo (which came before Radiation alphabetically) as the refer-
ence level.

 ✓ The stage of disease at the time of treatment (a numerical variable 
Stage, equal to 1, 2, 3, or 4). Using a numerical variable as Stage implies 
the assumption that every successive increase in stage number by 1 is 
associated with a constant relative increase in hazard. If you don’t want 
to make that assumption, you must code Stage as a categorical variable, 
with four levels (Stage 1 through Stage 4).

Using the R statistical software, the proportional hazards regression can be 
invoked with a single command:

coxph(formula = Surv(Time, Status) ~ Stage + Tx)

Figure 24-4 shows R’s results, using the data that I graph in Figure 24-3. The 
output from other statistical programs won’t look exactly like Figure 24-4, but 
you should be able to find the main components described in the following 
sections.

 

Figure 24-4: 
Output of 
a Cox PH 

regression.
 

 Illustration by Wiley, Composition Services Graphics
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Testing the validity of the assumptions
When you’re analyzing data by PH regression, you’re assuming that your 
data is really consistent with the idea of flexing a baseline survival curve by 
raising all the points in the entire curve to the same power (shown as h in 
Figures 24-1b and 24-2b). You’re not allowed to twist the curve so that it goes 
higher than the baseline curve (h < 1) for small time values and lower than 
baseline (h > 1) for large time values. That would be a non-PH flexing of the 
curve.

One quick check to see whether a predictor is affecting your data in a non-PH 
way is to take the following steps:

 1. Split your data into two groups, based on the predictor.

 2. Plot the Kaplan-Meier survival curve for each group (see Chapter 22).

  If the two survival curves show the slanted figure-eight pattern shown 
in Figure 24-5, don’t try to use Cox PH regression on that data. (At least 
don’t include that predictor variable in the model.)

 

Figure 24-5:  
Don’t try 
propor-

tional-
hazards 

regression 
on this kind 

of data.
 

 Illustration by Wiley, Composition Services Graphics

 Your statistical software may offer several options to test the hazard- 
proportionality assumption. Check your software’s documentation to see 
what it offers (which may include the following) and how to interpret its 
output.

 ✓ Graphs of the hazard functions versus time, which let you see the extent 
to which the hazards are proportional.

 ✓ A statistical test for significant hazard proportionality. R provides a 
function called cox.zph for this purpose; other packages may offer a 
comparable option.
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Checking out the table of  
regression  coefficients
A regression coefficients table in a survival regression looks very much like 
the tables produced by almost all kinds of regression: ordinary least-squares, 
logistic, Poisson, and so on. The survival regression table has a row for every 
predictor variable, usually containing the following items:

 ✓ The value of the regression coefficient. Not too meaningful by itself, it 
tells how much the hazard ratio’s logarithm increases when the predic-
tor variable increases by exactly 1.0 unit. In Figure 24-4, the coefficient for 
Stage is 0.4522, indicating that every increase of 1 in the stage of the dis-
ease (going from 1 to 2, from 2 to 3, or from 3 to 4) increases the logarithm 
of the hazard by 0.4522 (more advanced stage of disease is associated with 
poorer survival). For a categorical predictor like treatment (Tx), there will 
be a row in the table for each non-reference level (in this case, a line for 
Radiation). The coefficient for Radiation is –0.4323; the negative sign indi-
cates that Radiation has less hazard (better survival) than Chemo.

 ✓ The coefficient’s standard error (SE), which is a measure of the pre-
cision of the regression coefficient. The SE of the Stage coefficient is 
0.1013, so you would express the Stage coefficient as 0.45 ± 0.10.

 ✓ The coefficient divided by its SE (often designated as t or Wald).

 ✓ The p value. If less than 0.05, it indicates that the coefficient is signifi-
cantly different from 0 (that is, the corresponding predictor variable is 
significantly associated with survival) after adjusting for the effects of all 
the other variables (if any) in the model. The p value for Stage is shown 
as 8.09e–06, which is scientific notation for 0.000008, indicating that 
Stage is very significantly associated with survival.

 ✓ The hazard ratio and its confidence limits, which I describe in the 
next section.

 You may be surprised that no intercept (or constant) row is in the table. Cox 
PH regression doesn’t include an intercept in the linear part of the model; the 
intercept is absorbed into the baseline survival function.

Homing in on hazard ratios and 
their  confidence intervals
Hazard ratios from survival and other time-to-event data are used extensively 
as safety and efficacy outcomes of clinical trials, as well as in large-scale 
epidemiological studies. Depending on how the software formats its output, 
it may show the hazard ratio for each predictor in a separate column in the 
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regression table, or it may create a separate table just for the hazard ratios 
and their confidence intervals.

 If the software doesn’t give hazard ratios or their confidence intervals, you 
can calculate them from the regression coefficients (Coef) and standard errors 
(SE) as follows:

 ✓ Hazard Ratio = eCoef

 ✓ Low 95 percent CI = eCoef – 1.96 × SE

 ✓ High 95 percent CI = eCoef + 1.96 × SE

Hazard ratios are useful and meaningful measures of the extent to which a 
variable influences survival.

 ✓ A hazard ratio of 1 (which corresponds to a regression coefficient of 0) 
indicates that the variable has no effect on survival.

 ✓ The confidence interval around the hazard ratio estimated from your 
data sample indicates the range in which the true hazard ratio (of the 
population from which your sample was drawn) probably lies.

In Figure 24-4, the hazard ratio for Stage is e0.4522 = 1.57, with a 95 percent 
confidence of 1.29 to 1.92 per unit of stage number, which means that every 
increase of 1 in the stage of the disease is associated with a 57 percent increase 
in hazard (multiplying by 1.57 is equivalent to a 57 percent increase). Similarly, 
the hazard ratio for Radiation relative to Chemo is 0.649, with a 95 percent con-
fidence interval of 0.43 to 0.98.

 Risk factors (such as smoking relative to nonsmoking) usually have hazard 
ratios greater than 1. Protective factors (such as drug relative to placebo) usu-
ally have hazard ratios less than 1.

Assessing goodness-of-fit and predictive 
ability of the model
There are several measures of how well a regression model fits the survival 
data. These measures can be useful when you’re choosing among several dif-
ferent models:

 ✓ Should you include a possible predictor variable (like Age) in the model?

 ✓ Should you include the squares or cubes of predictor variables in the 
model (like Age2 or Age3 in addition to Age)?

 ✓ Should you include a term for the interaction between two predictors? 
(See Chapter 19 for details on interactions.)
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Your software may offer one or more of the following goodness-of-fit measures:

 ✓ A measure of concordance, or agreement, between the observed and pre-
dicted outcomes — the extent to which subjects with higher predicted 
hazard values had shorter observed survival times (which is what you’d 
expect). Figure 24-4 shows a concordance of 0.642 for this regression.

 ✓ An R (or R2) value that’s interpreted like a correlation coefficient in ordi-
nary regression — the larger the R2 value, the better the model fits the 
data. In Figure 24-4, R-square is 0.116.

 ✓ A likelihood ratio number (and associated p value) that compares the 
full model (that includes all the parameters) to a model consisting of just 
the overall baseline function. In Figure 24-4, the likelihood ratio p value is 
shown as 4.46e–06, which is scientific notation for p = 0.00000446, indi-
cating a model that includes the Tx and Stage variables can predict sur-
vival significantly better than just the overall (baseline) survival curve.

 ✓ Akaike’s Information Criterion (AIC) or Bayesian Information Criterion 
(BIC), which are especially useful for comparing alternative models (see 
Chapter 19).

Focusing on baseline survival  
and hazard functions
The baseline survival function is represented as a table with two columns 
(time and predicted survival) and a row for each distinct time at which one 
or more events were observed.

 The baseline survival function’s table may have hundreds of rows for large 
data sets, so printing it isn’t often useful. But if your software can save the 
table as a data file, you can use it to generate a customized prognosis curve 
for any specific set of values for the predictor variables. (I talk about progno-
sis curves in the following section.)

The software may also offer a graph of the baseline survival function. If your 
software is using an “average-subject” baseline, this graph is useful as an 
indicator of the entire group of subjects’ overall survival. But if your software 
uses a “zero-subject” baseline, the curve is probably of no use.

The baseline hazard function may also be available as a table or as a graph, 
which provides insight into the course of the disease. Some diseases have a 
long latency period (time during which little seems to be happening) during 
which deaths are relatively infrequent, whereas other diseases are more 
aggressive, with many early deaths.
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How Long Have I Got, Doc? Constructing 
Prognosis Curves

One of the (many) reasons for doing any kind of regression analysis is to 
predict outcomes from any particular set of predictor values, and survival 
regression is no exception: You can use the regression coefficients from a 
Cox PH regression, along with the baseline survival curve, to construct an 
expected survival (prognosis) curve for any set of predictor values.

Suppose you’re an oncologist who’s analyzing survival time (from diagno-
sis to death) for a group of cancer patients in which the predictors are age, 
tumor stage, and tumor grade at the time of diagnosis. You’d run a Cox PH 
regression on your data and have the program generate the baseline survival 
curve as a table of times and survival probabilities. Then, if you (or any other 
doctor) diagnose a patient with cancer, you can take that person’s age, stage, 
and grade, and generate an expected survival curve tailored for that particu-
lar person. (I’m not sure I’d want to see that curve if I were the patient, but at 
least it could be done.)

 You’ll probably have to do these calculations outside of the software that you 
use for the survival regression, but the calculations aren’t difficult, and can 
easily be done in a spreadsheet. The example in the following sections shows 
how it’s done, using the rather trivial set of sample data that’s preloaded into 
the online calculator for Cox PH regression at StatPages.info/prophaz.
html. This particular example has only one predictor, but the basic idea 
extends to multiple predictors in a simple way, which I explain as I go.

Running the proportional-hazards 
 regression
Figure 24-6 shows the output from the built-in example (omitting the Iteration 
History and Overall Model Fit sections). Pretend that this data represents 
survival, in years, as a function of Age (which, in this output, is referred to as 
Variable 1) for people just diagnosed with some particular disease.

First, consider the table in the Baseline Survivor Function section, which has 
two columns — time (years) and predicted survival (as a fraction) — and 
four rows — one for each time point in which one or more deaths was actu-
ally observed. The baseline survival curve for the dummy data starts (as sur-
vival curves always do) at 1.0 (100 percent survival) at time 0. (This row isn’t 
shown in the output.) The survival curve remains flat at 100 percent until 
year two, when it suddenly drops down to 99.79 percent, where it stays until 
year seven, when it drops down to 98.20 percent, and so on.

http://statpages.info/prophaz.html
http://statpages.info/prophaz.html
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Figure 24-6: 
Output of 

Cox PH 
regres-
sion for 

generating 
prognostic 

curves.
 

 Illustration by Wiley, Composition Services Graphics

In the Descriptive Stats section near the start of the output, the average age 
of the 11 subjects in the test data set is 51.1818 years, so the baseline survival 
curve shows the predicted survival for a person who is exactly 51.1818 years 
old. But suppose you want to generate a survival curve that’s customized 
for a person who is, say, 55 years old. According to the proportional-hazards 
model, you need to raise the entire baseline curve (in this case, each of the 
four tabulated points) to some power: h.

 In general, h depends on two things:

 ✓ The particular value for that subject’s predictor variables (in this exam-
ple, an Age of 55)

 ✓ The values of the corresponding regression coefficients (in this example, 
0.3770, from the regression table)

Finding h
To calculate the h value, do the following for each predictor:

 1. Subtract the average value from the patient’s value.
  In this example, you subtract the average age (51.18) from the patient’s 

age (55), giving a difference of +3.82.

 2. Multiply the difference by the regression coefficient and call the 
 product v.
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  In this example, you multiply 3.82 from Step 1 by the regression coeffi-
cient for Age (0.377), giving a product of 1.44 for v.

 3. Calculate the v value for each predictor in the model.

 4. Add all the v values; call the sum of the individual v values V.

  This example has only one predictor variable (Age), so V is just the v 
value you calculate for age in Step 2 (1.44).

 5. Calculate eV.

  This is the value of h. In this example, e1.44 gives the value 4.221, which is 
the h value for a 55-year-old person.

 6. Raise each of the baseline survival values to the power of h to get the 
survival values for the prognosis curve.

  In this example, you have the following prognosis:

	 •	For	year-zero	survival	1.0004.221 = 1.000, or 100 percent

	 •	For	two-year	survival:	0.99794.221 = 0.9912, or 99.12 percent

	 •	For	seven-year	survival	0.98204.221 = 0.9262, or 92.62 percent

	 •	For	nine-year	survival	0.95254.221 = 0.8143, or 81.43 percent

	 •	For	ten-year	survival	0.83104.221 = 0.4578, or 45.78 percent

You then graph these calculated survival values to give a customized survival 
curve for this particular person. And that’s all there is to it!

 Here’s a short version of the procedure:

 1. V = sum of [(subject value – average value) * coefficient] summed over 
all the predictors

 2. h = eV

 3. Customized survival = (baseline survival)h

 Some points to keep in mind:

 ✓ If your software puts out a zero-based baseline survival function, then 
the only difference is that you don’t subtract the average value from the 
subject’s value; instead, calculate the v term as the simple product of 
the subject’s predictor value multiplied by the regression coefficient.

 ✓ If a predictor is a categorical variable, you have to code the levels as 
numbers. If you have a dichotomous variable like gender, you could 
code male = 0 and female = 1. Then if, for example, 47.2 percent of the 
subjects are female, the “average gender” is 0.472, and the subtraction 
in Step 1 is (0 – 0.472), giving –0.472 if the patient is male, or (1 – 0.472), 
giving 0.528 if the subject is female. Then you carry out all the other 
steps exactly as described.
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 ✓ It’s even a little trickier for multivalued categories like race or district, 
because you have to code each of these variables as a set of dummy 
variables (see Chapter 19).

Estimating the Required Sample  
Size for a Survival Regression

Note: Elsewhere in this chapter, I use the word power in its algebraic sense (x2 
is x to the power of 2). But in this section, I use power in its statistical sense: 
the probability of getting a significant result when performing a statistical test.

Sample-size calculations for regression analysis tend to be difficult for all but 
the simplest straight-line regressions (see Chapter 18). You can find software 
for many types of regression, including survival, but it often asks you for 
things you can’t readily provide.

 Very often, sample-size estimates for studies that use regression methods 
to analyze the data are based on simpler analytical methods. I recommend 
that when you’re planning a Cox PH regression, you base your sample-size 
estimate on the simpler log-rank test, which I describe in Chapter 23. The free 
PS-Power and Sample Size program handles these calculations very well.

You still have to specify the following:

 ✓ Alpha level (usually 0.05)

 ✓ Desired power (usually 80 percent)

 ✓ Effect size of importance (usually expressed as a hazard ratio or as the 
difference in median survival time between groups)

You also need some estimates of the following:

 ✓ Anticipated enrollment rate: How many subjects you hope to enroll per 
month or per year

 ✓ Planned duration of follow-up: How long, after the last subject has been 
enrolled, you plan to continue following all the subjects before ending 
the study and analyzing your data

I describe power calculations for survival comparisons in Chapter 23.

 If this simpler approach isn’t satisfactory, talk to a professional statistician, 
who will have access to more sophisticated software. Or, you can undertake 
a Monte-Carlo simulation of the proposed trial and regression analysis (see 
Chapter 3 for details on this simulation), but this task is seldom necessary.



Part VI 
The Part of Tens

 Check out an additional Part of Tens list all about names every biostatistician should 
know at www.dummies.com/extras/biostatistics.

http://www.dummies.com/extras/biostatistics


In this part . . .
 ✓ Find common statistical distributions that describe how your 

data may fluctuate and common distribution functions that 
arise in statistical significance testing.

 ✓ Follow simple rules for getting quick estimates of the number of 
subjects you need for a properly designed study.
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Ten Distributions Worth Knowing
In This Chapter
▶ Delving into distributions that often describe your data
▶ Digging into distributions that arise during statistical significance testing

T 
his chapter describes ten statistical distribution functions you’ll prob-
ably encounter in biological research. For each one I provide a graph of 

what that distribution looks like as well as some useful or interesting facts 
and formulas.

You find two general types of distributions here:

 ✓ Distributions that describe random fluctuations in observed data: 
Your experimental data will often conform to one of the first seven 
common distributions. These distributions have one or two adjustable 
parameters that let them “fit” the fluctuations in your observed data.

 ✓ Common test statistic distributions: The last three distributions — the 
Student t, chi-square, and Fisher F distributions — don’t describe your 
observed data; they describe how a test statistic (calculated as part of a 
statistical significance test) will fluctuate if the null hypothesis is true — 
that is, if the apparent effects in your data (differences between groups, 
associations between variables, and so on) are due only to random 
fluctuations. So, they’re used to obtain p values, which indicate the 
statistical significance of the apparent effects. (See Chapter 3 for more 
information on significance testing and p values.)

  This chapter provides a very short table of critical values for the t, chi-
square, and F distributions — the value that your calculated test statis-
tic must exceed in order for you to declare significance at the p < 0.05 
level. For example, the critical value for the normal distribution is 1.96 
for the 0.05 significance level.
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The Uniform Distribution
The uniform distribution is one of the simplest distributions — a continuous 
number between 0 and 1 or (more generally) between a and b, with all values 
within that range equally likely (see Figure 25-1). The uniform distribution 
has a mean value of b – a and a standard deviation of . The uni-
form distribution arises in the following contexts:

 ✓ Round-off errors are uniformly distributed. For example, a weight 
recorded as 85 kilograms can be thought of as a uniformly distributed 
random variable between 84.5 and 85.5 kilograms, with a standard error 
of 0.29 kilogram.

 ✓ The p value from any exact significance test is uniformly distributed 
between 0 and 1 if, and only if, the null hypothesis is true.

 

Figure 25-1: 
The uniform 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

 The Excel formula =RAND() generates a random number drawn from the stan-
dard uniform distribution.

The Normal Distribution
The normal distribution is the king of statistical distributions. It describes 
variables whose fluctuations are the combined result of many independent 
causes. Figure 25-2 shows the shape of the normal distribution for various 
values of the mean and standard deviation.

Many other distributions (binomial, Poisson, Student t, chi-square, Fisher F) 
become nearly normal-shaped for large samples.

 The Excel statement =NORMSINV(RAND()) generates a normally distributed 
random number, with mean = 0 and SD = 1.
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Figure 25-2: 
The normal 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

The Log-Normal Distribution
If a set of numbers (x) is log-normally distributed, then the logarithms of 
those numbers will be normally distributed (see the preceding section). 
Many enzyme and antibody concentrations are log-normally distributed. 
Hospital lengths of stay, charges, and costs are approximately log-normal.

You should suspect log-normality if the standard deviation of a set of num-
bers is comparable in magnitude to the mean of those numbers. Figure 25-3 
shows the relationship between the normal and log-normal distributions.

 

Figure 25-3:  
The log-

normal 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

If a set of log-normal numbers has a mean A and standard deviation D, 
then the natural logarithms of those numbers will have a standard deviation 
s = Log[1 + (D/A)2], and a mean m = Log(A) – s2/2.
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The Binomial Distribution
The binomial distribution tells the probability of getting x successes out of 
N independent tries when the probability of success on one try is p. (See 
Chapter 3 for an introduction to probability.) The binomial distribution 
describes, for example, the probability of getting x heads out of N flips of a 
fair (p = 0.5) or lopsided (p ≠ 0.5) coin. Figure 25-4 shows the frequency distri-
butions of three binomial distributions, all having p = 0.7 but having different 
N values.

 

Figure 25-4:  
The 

binomial 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

The formula for the probability of getting x successes in N tries when the 
probability of success on one try is p is Pr(x, N, p) = px(1 – p)N–xN!/[x!(N – x)!].

As N gets large, the binomial distribution’s shape approaches that of a 
normal distribution with mean = Np and standard deviation = . (I talk 
about the normal distribution later in this chapter.)

 The arc-sine of the square root of a set of proportions is approximately nor-
mally distributed, with a standard deviation of . Using this “transfor-
mation,” you can analyze data consisting of observed proportions (such as 
fraction of subjects responding to a treatment) with t tests, ANOVAs, regres-
sion models, and other methods designed for normally distributed data.

The Poisson Distribution
The Poisson distribution gives the probability of observing exactly N inde-
pendent random events in some interval of time or region of space if the 
mean event rate is m. It describes, for example, fluctuations in the number of 
nuclear decay counts per minute and the number of pollen grains per square 
centimeter on a microscope slide. Figure 25-5 shows the Poisson distribution 
for three different values of the mean event rate.
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Figure 25-5: 
The Poisson 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

The formula is Pr (N, m) = mNe–m/N!

As m gets large, the Poisson distribution’s shape approaches that of a normal 
distribution (see the next section), with mean = m and standard deviation = .

 The square roots of a set of Poisson-distributed numbers are approximately 
normally distributed, with a standard deviation of 1/2.

The Exponential Distribution
If a set of events follows the Poisson distribution (which I discuss earlier in 
this chapter), the time intervals between consecutive events follow the expo-
nential distribution and vice versa. Figure 25-6 shows the shape of two differ-
ent exponential distributions.

 

Figure 25-6:  
The expo-

nential 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

 The Excel statement = –LN(RAND()) makes exponentially distributed random 
numbers with mean = 1.
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The Weibull Distribution
This function describes failure times for people or devices (such as light 
bulbs), where the failure rate can be constant or can change over time 
depending on the shape parameter, k. The failure rate is proportional to time 
raised to the k – 1 power, as shown in Figure 25-7a.

 ✓ If k < 1, the failure rate declines over time (with lots of early failures).

 ✓ If k = 1, the failure rate is constant over time (corresponding to an expo-
nential distribution).

 ✓ If k > 1, the failure rate increases over time (as items wear out).

Figure 25-7b shows the corresponding cumulative survival curves.

 

Figure 25-7: 
The Weibull 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

This distribution leads to survival curves of the form , 
which are widely used in industrial statistics. But survival methods that don’t 
assume any particular formula for the survival curve are more common in 
biostatistics.

The Student t Distribution
This family of distributions is most often used when comparing means 
between two groups or between two paired measurements. Figure 25-8 shows 
the shape of the Student t distribution for various degrees of freedom. (See 
Chapter 12 for more info about t tests and degrees of freedom.)
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Figure 25-8: 
The Student 

t distribu-
tion.

 
 Illustration by Wiley, Composition Services Graphics

As the degrees of freedom increase, the shape of the Student t distribution 
approaches that of the normal distribution that I discuss earlier in this chapter.

Table 25-1 shows the “critical” t value for various degrees of freedom.

 Random fluctuations cause t to exceed the critical t value (on either the 
positive or negative side) only 5 percent of the time. If the t value from your 
Student t test exceeds this value, the test is significant at p < 0.05.

Table 25-1 Critical Values of Student t for p = 0 .05
Degrees of Freedom tcrit

1 12.71
2 4.30
3 3.18
4 2.78
5 2.57
6 2.45
8 2.31
10 2.23
20 2.09
50 2.01
∞ 1.96

 For other p and df values, the Excel formula =TINV(p, df) gives the critical 
Student t value.
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The Chi-Square Distribution
This family of distributions is used for testing goodness-of-fit between 
observed and expected event counts and for testing for association between 
categorical variables. Figure 25-9 shows the shape of the chi-square distribu-
tion for various degrees of freedom. (See Chapter 13 for more info about the 
chi-square test and degrees of freedom.)

 

Figure 25-9:  
The chi-

square 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

As the degrees of freedom increase, the shape of the chi-square distribution 
approaches that of the normal distribution that I discuss earlier in this chapter.

Table 25-2 shows the “critical” chi-square value for various degrees of freedom.

 Random fluctuations cause chi-square to exceed the critical chi-square value 
only 5 percent of the time. If the chi-square value from your test exceeds the 
critical value, the test is significant at p < 0.05.

Table 25-2 Critical Values of Chi-Square for p = 0 .05
Degrees of Freedom χ2Crit
1 3.84
2 5.99
3 7.81
4 9.49
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Degrees of Freedom χ2Crit
5 11.07
6 12.59
7 14.07
8 15.51
9 16.92
10 18.31

 For other p and df values, the Excel formula =CHIINV(p, df) gives the critical χ2 
value.

The Fisher F Distribution
This family of distributions is most frequently used to get p values from an 
analysis of variance (ANOVA). Figure 25-10 shows the shape of the Fisher F 
distribution for various degrees of freedom. (See Chapter 12 for more info 
about ANOVAs and degrees of freedom.)

 

Figure 25-10:  
The Fisher F 
distribution.

 
 Illustration by Wiley, Composition Services Graphics

Figure 25-11 shows the “critical” Fisher F value for various degrees of freedom.

 Random fluctuations cause F to exceed the critical F value only 5 percent of 
the time. If the F value from your ANOVA exceeds this value, the test is signifi-
cant at p < 0.05.
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Figure 25-11: 
Critical 

values of 
Fisher F for 

p = 0.05.
 

 Illustration by Wiley, Composition Services Graphics

For other values of p, df1, and df2, the Excel formula =FINV(p, df1, df2) will give 
the critical F value. 
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Ten Easy Ways to Estimate How 
Many Subjects You Need

In This Chapter
▶ Quickly estimating sample size for several basic kinds of tests
▶ Adjusting for different levels of power and alpha
▶ Adjusting for unequal group sizes and for attrition during the study

S 
ample-size calculations tend to frighten researchers and send them 
running to the nearest statistician. But if you’re brainstorming a pos-

sible research project and you need a ballpark idea of how many subjects 
to enroll, you can use the ten quick and (fairly) easy rules of thumb in this 
chapter.

 Before you begin, look at Chapter 3, especially the sections on hypothesis test-
ing and the power of a test, so that you have the basic idea of what power and 
sample-size calculations are all about. Think about the effect size of importance 
(such as the difference in some variable between two groups, or the degree of 
correlation between two variables) that you want to be able to detect. Then 
find the rule for the statistical test that’s appropriate for the primary objective 
of your study.

The first six sections tell you how many analyzable subjects you need to 
analyze in order to have an 80 percent chance of getting a p value that’s less 
than 0.05 when you run the test. Those parameters (80 percent power at 0.05 
alpha) are widely used in biological research. The remaining four sections 
tell you how to modify this figure for other power or alpha values and how to 
adjust for unequal group size and dropouts from the study.
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Comparing Means between Two Groups
 ✓ Applies to: Unpaired Student t test, Mann-Whitney U test, or Wilcoxon 

Sum-of-Ranks test (see Chapter 12).

 ✓ Effect size (E): The difference between the means of two groups divided 
by the standard deviation (SD) of the values within a group. (See 
Chapter 8 for details on means and SD.)

 ✓ Rule: You need 16/E2 subjects in each group, or 32/E2 subjects altogether.

For example, if you’re comparing a blood pressure (BP) drug to a placebo, 
an improvement of 10 millimeters of mercury (mmHg) is important, and the 
SD of the BP changes is known to be 20 mmHg, then E = 10/20, or 0.5, and you 
need 16/(0.5)2, or 64 subjects in each group (128 subjects altogether).

Comparing Means among Three,  
Four, or Five Groups

 ✓ Applies to: One-way Analysis of Variance (ANOVA) or Kruskal-Wallis test 
(see Chapter 12).

 ✓ Effect size (E): The difference between the largest and smallest means 
among the groups divided by the within-group SD.

 ✓ Rule: You need 20/E2 subjects in each group.

Continuing the example from the preceding section, if you’re comparing two 
BP drugs and a placebo (for a total of three groups), and if any difference of 10 
mmHg between any pair of drugs is important, then E is still 10/20, or 0.5, but 
you now need 20/(0.5)2, or 80 subjects in each group (240 subjects altogether).

Comparing Paired Values
 ✓ Applies to: Paired Student t test or Wilcoxon Signed-Ranks test.

 ✓ Effect size (E): The average of the paired differences divided by the SD 
of the paired differences.

 ✓ Rule: You need 8/E2 subjects (pairs of values).

So, if you’re studying test scores before and after tutoring, a six-point 
improvement is important, and the SD of the changes is ten points, then  
E = 6/10, or 0.6, and you need 8/(0.6)2, or about 22 students, each of whom 
provides a “before” score and an “after” score.
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Comparing Proportions  
between Two Groups

 ✓ Applies to: Chi-square test of association or Fisher Exact test (see 
Chapter 13).

 ✓ Effect size (D): The difference between the two proportions, P1 and P2, 
that you’re comparing. You also have to calculate the average of the two 
proportions: P = (P1 + P2)/2.

 ✓ Rule: You need 16 × P × (1 – P)/D2 subjects in each group.

For example, if a disease has a 60 percent mortality rate but you think your 
drug can cut this rate in half (to 30 percent), then P = (0.6 + 0.3)/2, or 0.45, 
and D = 0.6 – 0.3, or 0.3. You need 16 × 0.45 × (1 – 0.45)/(0.3)2, or 44 subjects 
in each group (88 subjects altogether).

Testing for a Significant Correlation
 ✓ Applies to: Pearson correlation test (see Chapter 17) and is also a good 

approximation for the nonparametric Spearman correlation test.

 ✓ Effect size: The correlation coefficient (r) you want to be able to detect.

 ✓ Rule: You need 8/r2 subjects (pairs of values).

So, if you’re studying the association between weight and blood pressure, 
and you want the correlation test to come out significant if these two vari-
ables have a true correlation coefficient of at least 0.2, then you need to 
study 8/(0.2)2, or 200 subjects.

Comparing Survival between Two Groups
 ✓ Applies to: Log-rank test or Cox proportional-hazard regression (see 

Chapter 23).

 ✓ Effect size: The hazard ratio (HR) you want to be able to detect.

 ✓ Rule: The required total number of observed deaths (or events) =  
32/(natural log of HR)2.
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Here’s how the formula works out for several values of HR:

Hazard Ratio Total Number of Events
1.1 3,523
1.2 963
1.3 465
1.4 283
1.5 195
1.75 102
2.0 67
2.5 38
3.0 27

 Your enrollment must be large enough, and your follow-up must be long 
enough, to ensure that you get the required number of events. The required 
enrollment may be difficult to estimate beforehand, because it involves 
recruitment rates, censoring rates, the shape of the survival curve, and other 
things that are difficult to foresee and difficult to handle mathematically. So 
some protocols provide only a tentative estimate of the expected enrollment 
(for planning and budgeting purposes), and state that enrollment and/or fol-
low-up will continue until the required number of events has been observed.

Scaling from 80 Percent  
to Some Other Power

Here’s how you take a sample-size estimate that provides 80 percent power 
(from one of the preceding rules) and scale it up or down to provide some 
other power:

 ✓ For 50 percent power: Use only half as many subjects (multiply by 0.5).

 ✓ For 90 percent power: Increase the sample size by 33 percent (multiply 
by 1.33).

 ✓ For 95 percent power: Increase the sample size by 66 percent (multiply 
by 1.66).

For example, if you know (from some power calculation) that a study with 
70 subjects provides 80 percent power to test its primary objective, then a 
study that has 1.33 × 70, or 93 subjects, will have about 90 percent power to 
test that objective.
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Scaling from 0.05 to Some  
Other Alpha Level

Here’s how you take a sample-size estimate that was based on testing at the 
0.05 alpha level and scale it up or down to correspond to testing at some 
other alpha level:

 ✓ For 0.10 alpha: Decrease the sample size by 20 percent (multiply by 0.8).

 ✓ For 0.025 alpha: Increase the sample size by 20 percent (multiply by 1.2).

 ✓ For 0.01 alpha: Increase the sample size by 50 percent (multiply by 1.5).

For example, if you’ve calculated a sample size of 100 subjects based on using 
p < 0.05 as your criterion for significance, and then your boss says you have 
to apply a two-fold Bonferroni correction (see Chapter 5) and use p < 0.025 as 
your criterion instead, you need to increase your sample size to 100 × 1.2, or 
120 subjects, to have the same power at the new alpha level.

Making Adjustments for  
Unequal Group Sizes

When comparing means or proportions between two groups, it’s usually 
most efficient (that is, you get the best power for a given total sample size) if 
both groups are the same size. If you want to have unbalanced groups, you 
need more subjects overall in order to preserve the statistical power of the 
study. Here’s how to adjust the size of the two groups to keep the same sta-
tistical power:

 ✓ If you want one group twice as large as the other: Increase one group 
by 50 percent and reduce the other group by 25 percent. This increases 
the total sample size by about 13 percent.

 ✓ If you want one group three times as large as the other: Reduce one 
group by a third and double the other group. This increases the total 
sample size by about 33 percent.

 ✓ If you want one group four times as large as the other: Reduce one 
group by 38 percent and increase the other group by a factor of 2.5. This 
increases the total sample size by about 56 percent.
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Suppose, for example, you’re comparing two equal-size groups (drug and 
placebo), and you’ve calculated that you need 64 subjects (two groups of 32). 
But then you decide you want to randomize drug and placebo subjects in a 
2:1 ratio. To keep the same power, you’ll need 32 × 1.5, or 48 drug subjects, 
(an increase of 50 percent) and 32 × 0.75, or 24 placebo subjects (a decrease 
of 25 percent), for a total of 72 subjects altogether.

Allowing for Attrition
Most sample-size calculations (including the quick formulas shown in this 
chapter) tell you how many analyzable subjects you need. But you have 
to enroll more than that number because some subjects will drop out of 
the study or be unanalyzable for other reasons. Here’s how to scale up the 
number of analyzable subjects (from a power calculation) to get the number 
of subjects you need to enroll:

Enrollment = Number Analyzable × 100/(100 – %Attrition)

Here are the enrollment scale-ups for several attrition rates:

Expected Attrition Increase the Enrollment by
5% 5%
10% 11%
15% 18%
20% 25%
25% 33%
33% 50%
50% 100%

So, if a power calculation indicates that you need a total of 60 analyzable sub-
jects and you expect a 25 percent attrition rate, you need to enroll 60 × 1.33, 
or 80 subjects. That way, you’ll still have 60 subjects left after a quarter of the 
original 80 subjects have dropped out. 
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• Symbols •
α (alpha) 

controlling across important 
hypotheses, 75

defined, 42, 44
limiting chances for, 45
power affected by, 45
for sample-size calculation, 226
scaling sample size for, 373
spending strategy, 76
Type I error inflation, 74–75
usual level of, 46

* (asterisk)
multiplication indicated by, 21
powers indicated by (**), 22

β (beta), 42, 44
[ ] (brackets), multiplication indicated by, 21
^ (caret), powers indicated by, 22
{ } (curly braces), multiplication 

indicated by, 21
= (equal sign), equations indicated by, 26
γ (gamma) as skewness coefficient, 113
κ (kappa)

for Cohen’s Kappa, 202
for Pearson kurtosis index, 114

– (minus sign), 20–21
( ) (parentheses), multiplication 

indicated by, 21
π (pi, lowercase) constant, defined, 19
Π (pi, uppercase) as array symbol, 29
+ (plus sign), addition indicated by, 20
· (raised dot), multiplication indicated by, 21
/ (slash), division indicated by, 22
|| (vertical bars), absolute value 

indicated by, 25
1-dimensional arrays, 26–27
2-dimensional arrays, 27, 28
3D charts, avoiding, 105

• A •
absence of harmful effects, 211–212
absolute values, indicating, 25
accuracy

defined, 38, 121
improving for measurements, 126–127
improving for sampling, 126
overall, 198, 281
precision versus, 38–39, 121
of sample statistic, 123
systematic errors affecting, 124–125

actuarial table. See life table
addition

mathematical operator for, 20
sums of array elements, 28–29

addresses, recording, 96
administrative details for a study, 70
adverse events, handling, 69
aims of a study, 61, 62
Akaike’s Information Criterion (AIC), 277, 

295, 352
Algebra I For Dummies (Sterling), 17, 30
Algebra II For Dummies (Sterling), 17
alignment charts (nomograms), 59–60, 

170–171, 208
alpha (α)

controlling across important 
hypotheses, 75

defined, 42, 44
power affected by, 45
for sample-size calculation, 226
scaling sample size for, 373
setting a value for, 45
spending strategy, 76
Type I error inflation, 74–75
usual level of, 46

alternate hypothesis (H1 or HAlt), 41
alternative models, comparing, 297–298
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analysis of covariance (ANCOVA), 
158, 160–161

analysis of variance (ANOVA)
basic idea of, 164–165
for data grouped on different variables, 158
for dissimilar standard deviations, 158
interpreting output of, 166–168
one-way, 157
one-way, three-level, 157
one-way, two-level, 157
post-hoc tests, 165–166
running, 166
on summary data, 168–169
for three or more groups, 157
three-way, 158
variance table, 166–167
Welch unequal-variance, 158

analytical populations, 67, 69
analyzing your data. See data analysis
and rule for probability, 32–33
animal studies, 79
antilogarithm (antilog), 24
apps, 48, 58
arithmetic mean, 107
arrays, 26–29
assay sensitivity, 214
asterisk (*)

multiplication indicated by, 21
powers indicated by (**), 22

attrition, sample-size estimation allowing 
for, 374

average value, 41. See also comparing 
averages

• B •
background information for a study, 68
balanced confidence interval, 135
bar charts, 105, 118–119. See also 

histograms
baseline hazard function, 342
baseline survival function, 342–344
beta (β), 42, 44
between-group difference, 200–201
bimodal distribution, 106, 108
binary logarithms, 23
binary variables, 189, 193–194, 254

binomial distribution, 37, 362
bio-creep, 218
bioequivalence, 211
bioequivalence studies (BE), 88, 212, 213, 

214, 215
blinding, 65, 69
Bonferroni adjustment, 75
Bonferroni test, 165
Box plots, 119–120
box-and-whiskers (B&W) charts, 119–120
Box-Cox transformation, 117–118
brackets ([ ]), multiplication indicated by, 21

• C •
calculators

cross-tabulated data for, 174
for error propagation, 150–151
for fourfold tables, 190
for power, 48
printed, 59–60
scientific and programmable, 57
web-based, 48, 58–59, 150–151, 190

calibrating instruments, 126–127
caret (^), powers indicated by, 22
Case Report Form (CRF), 63, 72
case-sensitivity, 20, 25
categorical data

coding categories carefully, 96–97
in data dictionary, 102
graphing, 105
multi-level categories, 97–98
odds ratios for predictors, 286–287
recording, 96–98
summarizing, 104
tabulating to check errors, 101

categorical variables
cross-tabulation by, 104
defined, 35
for multiple regression, 254–255
recoding as numerical, 255–256
reference level, 255

cells and tissues, studies on, 79
censored data. See also estimating 

censored data
example, 315–316
reasons for, 315
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recording censoring information, 327–328
techniques for handling, 316–317
techniques not applicable to, 317–318

Centers for Disease Control, 56
centiles, 112, 329
central limit theorem (CLT), 127, 137
central tendency of data, 107–110
certification, 72
charts. See graphs and charts; tables
chemical studies, 79
chi-square distribution, 366–367
chi-square test. See Pearson chi-square test
CI. See confidence interval
CL. See confidence interval (CI)
clinical research. See also drug 

development
analyzing your data, 73–76
collecting and validating data, 72–73
conducting a study, 70–73
data collection and validation, 72–73
designing a study, 61–70
as focus of this book, 1, 11
protecting your subjects, 70–72
validating data, 72–73

cloud-based software, 59
clustered events, Poisson regression 

with, 298
coding data

categorical variables as numerical, 255–256
for gender, 96–97
for missing values, 98, 99
for multi-level categories, 97–98
numerical data, 99

coefficient of determination, 247
coefficient of variation, 111
Cohen’s Kappa (κ), 202
collecting data, 72–73
collinearity, 263–264, 285
common logarithms, 23
comparing averages

for data grouped on different 
variables, 158

for within-group changes between 
groups, 160–161

for matched sets, 159–160
mean to hypothesized value, 156

nuisance variable adjustment for, 158
situations requiring, 155–156
for three or more groups, 157
for two groups, 156–157

comparing survival between groups. 
See also survival regression

in complicated situations, 337
Kaplan-Meier method for, 330
life-table method for, 330
log-rank test for, 332–336
sample-size estimation, 337–338, 371–372

complete separation problem, 287–288
computer software. See also software

case-level data with, 174
case-sensitivity of, 25
commercial, 52–55
demo versions, 52
development of, 51–52
free, 55–57
indicating factorials in, 24
for logistic regression, 274–275
for log-rank test, 333
for multiple regression, 254–258
for power calculation, 48
spreadsheet programs, 54

concordance, 352
confidence interval (CI)

around means, 137–139, 142
around proportions, 139
around regression coefficients, 141
assessing significance using, 141–142
balanced versus unbalanced, 135
calculating for rate ratio, 207, 208
for Cohen’s Kappa, 202
described, 12, 40, 134
for equivalence and noninferiority, 215–217
formulas for large samples, 136–137
keeping as narrow as possible, 135
no-effect values, 141
normal-based, multipliers for, 137
one-sided, 136
p value compared to, 142
for precision of incidence rate, 205–206
as range of values, 134
standard error versus, 134
upper and lower limits of, 195
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confidence limit (CL). See confidence 
interval (CI)

confidentiality, 70
confounders (nuisance variables), 

158, 187–188
confounding, 65
constants. See also specific types

explicit versus symbolic 
representation of, 19

in linear functions, 231
standard error multiplied or divided 

by, 147
standard error not changed by adding or 

subtracting, 146
continuous variables, 35
co-primary endpoints, 85
correlation coefficient

described, 193
Pearson, 222–226
straight-line regression, 247
tetrachoric, 193–194

correlation coefficient analysis
precision of r value, 224–225
r significantly different from zero,  

223–224
regression analysis versus, 239
sample size required for test, 226
significant difference in two r values, 225

correlation, defined, 221, 222
covariates for survival, 330
Cox PH regression, 341–345
CRF (Case Report Form), 63, 72
crossover structure of a study, 64
cross-tabulation. See also fourfold tables

for comparing proportions, 174
described, 173
Fisher Exact test, 181–185
fourfold tables, 173, 174, 189–202
Kendall test, 185–187
Mantel-Haenszel chi-square test, 187–188
marginal totals or marginals, 173
Pearson chi-square test, 174–181,  

183–185, 186
by two categorical variables, 104

curly braces ({ }), multiplication indicated 
by, 21

• D •
data

collecting, 72–73
file describing, 102
interval, 94
levels of measurement, 94–95
numerical versus non-numerical, 4
ordinal, 94
privacy and confidentiality of, 70
ratio, 94
recording, 63, 95–101
validating, 73, 101

data analysis
handling missing data, 74
handling multiplicity, 74–75
interim analyses, 76
selecting analyses, 66–67
Statistical Analysis Plan (SAP), 69

data dictionary, 102
data safety monitoring board or committee 

(DSMB or DSMC), 72
dates and times, 99–101, 102
deciles, 112
degrees of freedom (df), 162, 179
demo versions of software, 52
designing a clinical study

aims, objectives, hypotheses, and 
variables, 61–63

analytical populations, 67, 69
parallel versus crossover structure, 64
protocol components, 68–70
randomization, 64–66
sample size, 67–68
sample subject criteria, 63–64
selecting analyses, 66–67

diagnostic procedures, evaluating, 197–199
dichotomous (binary) variables,  

189, 193–194, 254
difference table, 176–177
dispersion, 110–112
distributions

bimodal, 106, 108
binomial, 37, 362
central tendency of, 107–110
characteristics of, 106
chi-square, 366–367
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for common test statistics, 359
dispersion of, 110–112
equations for, 37
exponential, 363
Fisher F, 367–368
kurtosis of, 113–114
log-normal, 37, 116–117, 157, 361
normal, 37, 106, 360–361
normalizing, 117–118
parametric functions for, 49
pointy-topped, 106, 114
Poisson, 37, 298, 362–363
population, 108
for random fluctuations in data, 359
representation of, 37
skewed, 106, 117–118
skewness of, 113
for statistical tests, 38
Student t distribution, 364–365
Student t test assumption about, 157
summary statistics showing, 103
uniform, 360
Weibull, 364

division, mathematical operators for, 22
dose-finding trials, 82–84
dose-limiting toxicities (DLTs), 80, 81
dose-response behavior, 83–84
dot, raised (·), multiplication indicated by, 21
double-blinding, 65
double-indexing for arrays, 27
drug development. See also clinical 

research
bioequivalence studies, 88
pharmacokinetics/pharmacodynamics 

studies, 86–88
Phase I: Maximum tolerated dose, 80–82
Phase II: Safety and efficacy, 82–84
Phase III: Proving the drug works, 84–85
Phase IV: Monitoring the marketed drug, 

85–86
preclinical studies, 78–79
reasons for looking at, 77
regulatory agencies, 80
steps in, 77–78
thorough QT trials, 88–90

DSMB or DSMC (data safety monitoring 
board or committee), 72

dummy variables, 255–256
Dunnett’s test, 166
Dupont, W. D. (software developer), 56

• E •
e constant, 2, 19, 22–23
effect size

for bioequivalence studies, 213
power affected by, 45, 46–47
for QT safety studies, 213
for sample-size calculation, 226
sample size relationship to, 47–48, 170–171
for therapeutic noninferiority studies, 213

effective doses on logistic curve, 280
effectiveness, 78
efficacy

co-primary endpoints, 85
defined, 78
drug testing for, 82–84
effectiveness versus, 78
noninferiority testing precaution, 217
popular usage of, 78

efficacy endpoints, 83
efficacy objectives, 62
elements of arrays, 28–29
environmental factors in precision, 125
Epi Info software, 56
epidemiology, 203
equal sign (=), equations indicated by, 26
equations, 17, 26. See also formulas
equivalence testing, 13, 214–217
equivalent functions, 305–306
error propagation

applying simple rules consecutively, 150
defined, 144
formulas for simple expressions, 146–149
online calculators for, 150–151
simulating, 152

error-checking for data, 73, 101
estimating censored data

interpreting survival curves, 328
Kaplan-Meier method for, 324–325
life-table method for, 318–324
recording censoring information 

correctly, 327–328
recording survival times correctly, 327
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event counts or rates
calculating observed and expected 

counts, 175–177
comparing two counts with identical 

exposure, 209
comparing two rates, 107–109
confidence interval around, 140
Poisson regression for, 291–298
standard error of, 130–131

ex vivo studies, 79
Excel software

data-recording cautions, 97, 99
error-checking techniques, 101
PopTools add-in for, 56
randomization using, 66
uses for biostatistics, 54

excess kurtosis, 114
exclusion criteria, 64, 126
explicit representation of constants, 19
exploratory objectives, 62
exponential distribution, 363
exponentiation, 22–23, 30
exposure, 204
expressions, 17. See also formulas

• F •
F statistic, 247–248, 260
F test for equal variances, 164
factorials, 24
false discovery rate (FDR), 75
false negative results, 197–198, 282–283
false positive results, 197–198, 282–283
FDA Adverse Event Reporting System 

(FAERS), 86
feedback to the author, 1
Fisher Exact test, 181–185
Fisher F distribution, 367–368
Fisher, R. A. (statistician), 181
Fisher z transformation, 224, 225
Fisher’s LSD test, 166
fitted logistic formula, 278–280
Food and Drug Administration (FDA), 

71, 80, 84–85, 86
formulas

arrays in, 28
defined, 17

hierarchy rules for, 25–26
typeset versus plain text format, 18
usage in this book, 17

fourfold tables. See also cross-tabulation
for assessing risk factors, 194–197
for comparing proportions, 174
conventions in this book for, 190–191
defined, 173, 189
for evaluating diagnostic procedures, 

197–199
Fisher Exact test, 181–185
fundamentals of, 190–191
for inter- and intra-rater reliability, 201–202
for investigating treatments, 199–201
Mantel-Haenszel chi-square test, 187–188
Pearson chi-square test, 174–181,  

183–185, 186
sample statistic from, 190
sampling strategies for, 191–192
scenarios leading to, 192
for tetrachoric correlation coefficient, 

193–194
free software, 48, 55–59
free-text data, recording, 95
frequency bar charts, 105
frequency distributions. See distributions
Friedman tests, 158, 159
functions

defined, 25
equivalent, 305–306
linear, 231
nonlinear, 231, 299
parametric distribution, 49
S-shaped, for logistic regression, 270–273
using in formulas, 25

• G •
Galton, Francis (statistician), 222
gamma (γ) as skewness coefficient, 113
gender, 2, 96–97
generalized linear model (GLM), 292–293
Generalized Savage’s test. See log-rank test
geometric mean (GM), formulas for, 109–110
gestational age, recording, 99
goals of a study, 61, 62
good clinical practice (GCP), 72
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good doses, defined, 84
goodness-of-fit indicators, 247–248, 351–352
G*Power software, 57
GraphPad InStat software, 54
GraphPad Prism software, 53–54
graphs and charts. See also scatter plots; 

tables
bar charts, 105, 118–119
box-and-whiskers charts, 119–120
of categorical data, 105
hazard rates and survival probabilities, 324
histograms, 35, 116–118
logistic regression data, 269–270
nomograms (alignment charts), 59–60, 

170–171, 208
of numerical data, 115–120
pie charts, 105
of probability distributions, 37
Receiver Operator Characteristics, 

283–285
of relationships between numerical 

variables, 120
residuals versus fitted, 242–243, 249
S-shaped function for logistic regression, 

270–273
3D charts, avoiding, 105

• H •
H0 (null hypothesis), 41, 43–45
H1 or HAlt (alternate hypothesis), 41
hazard rate

defined, 316
estimating censored data, 318–328
graphing from a life table, 324
interpreting life-table output, 323

hazard ratios, 345, 350–351
hierarchical testing strategy, 75
hierarchy rules for formulas, 25–26
histograms, 35, 116–118
historical control, comparing results to, 156
Hood, Greg (ecologist), 56
Hosmer-Lemeshow (H-L) test, 277
human error, 124
hypotheses, identifying, 62
hypothesis testing, 41–43

• I •
icons in this book, explained, 5–6
identification (ID) numbers, recording, 

95–96
imprecision. See precision
imputing values, 74, 317
in silico studies, 79
in vitro studies, 79
in vivo studies, 79
inaccuracy. See accuracy
incidence, 204
incidence rate (R), 204–207
inclusion criteria, 64, 126, 128
index of an array, 27
Informed Consent Form (ICF), 71–72
inner mean, 109
Institutional Review Boards (IRBs), 71, 72, 76
intent-to-treat (ITT) population, 67
inter- and intra-rater reliability, 201–202
intercept, 231, 244
interim analyses, 76
inter-quartile range (IQR), 112
interval data, 94, 100–101, 314
interval of uncertainty (IOU), 145

• K •
Kaplan-Meier (K-M) method, 324–328
kappa (κ)

for Cohen’s Kappa, 202
for Pearson kurtosis index, 114

Kendall test, 185–187
Krukal-Wallis test, 158
kurtosis, 113–114

• L •
Last Observation Carried Forward 

(LOCF), 74
LazStats software, 55
least-squares regression, 291–292. See also 

nonlinear regression
leptokurtic distribution, 114
lethal doses on logistic curve, 280
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life table
basic idea of, 318–319
creating, 319–323
graphing hazard rates and survival 

probabilities from, 324
guidelines for, 326–328
interpreting, 319–323

Likert agreement scale, 94, 97
linear, defined, 252
linear functions, 231
linear regression. See multiple regression; 

straight-line regression
logarithms, 23–24
logistic regression

assessing model adequacy, 276–277
calculations for, 273
collinearity in, 285
complete separation problem, 287–288
described, 14, 230
fitted logistic formula, 278–280
gathering and graphing data for, 268–270
interpreting output of, 275–285
issues to beware of, 285–288
with multiple predictors, 274
for nonlogistic data, avoiding, 285
odds ratios for categorical predictors, 

286–287
odds ratios for numerical predictors, 286
Receiver Operator Characteristics curve, 

283–285
reverse-coding of outcome variable, 286
running software for, 274–275
sample-size estimation, 288–289
S-shaped function for data, 270–273
steps for, 274–275
summary information about variables, 276
table of regression coefficients, 278
typical categorical outcomes of, 267
typical output of, 275, 276
uses for, 267–268
for yes or no predictions, 280–285

log-normal distribution, 37, 116–117, 361
log-normal transformation, 117
log-rank test

assumptions about data in, 336
basic idea of, 333

calculations for, 334–336
data for, 332
extended versions of, 331
limitations of, 340
other names for, 331
running on software, 333

LOWESS curve-fitting, 14
LOWESS regression, 306–310

• M •
Mann-Whitney (M-W) test, 157
Mantel-Cox test. See log-rank test
Mantel-Haenszel chi-square test, 187–188
Mantel-Haenszel test for survival data. See 

log-rank test
margin of error, 137, 144
marginal totals or marginals, 173, 176
masking (blinding), 65
matched numbers, comparing, 159–160
matched-pair data, comparing, 159
mathematical operations, 20–25
matrices, 28. See also arrays
maximum tolerated dose (MTD), 81–82
mean

arithmetic, 107
comparing to hypothesized value, 156
confidence interval around, 137–139, 142
geometric, 109–110
inner, 109
root-mean-square, 110
of sample versus population, 36
standard error of, 129–130

measurement
calibrating instruments for, 126–127
imprecision sources in, 125
improving accuracy of, 126–127
improving precision of, 128
indirect, 143
as kind of sampling, 123–124
systematic errors in, 124

median, 107–108
metadata, 102
Miller, Bill (software developer), 55
Minitab software, 55
minus sign (–), 20–21
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missing data
censored data versus, 317–318
coding, 98, 99
in data dictionary, 102
dates, 100
methods for handling, 74

mixed-model repeated measures 
(MMRM), 74

mobile devices, software for, 58
mode, sample versus population, 108
model building problem, 264
Monte-Carlo analysis, 152
MTD (maximum tolerated dose), 81–82
multicollinearity, 263–264, 285
multiple regression

basic idea of, 251–252
categorical variables for, 254–256
collinearity in, 263–264
dummy variables for, 255–256
fit of model to data, 262
interpreting output of, 258–262
matrix notation for, 252
for model building problem, 264
optional output for, 260
recoding categorical variables as 

numerical, 255–256
reference level for, 255
running software for, 254–258
sample-size estimation, 265
scatter plots for, 256–258
solving simultaneous equations for, 253
steps for, 258
suitability of data for, 261
synergistic effect in, 263
terms and notation used in, 252–253
typical output of, 259–260
uses for, 253

multiplication
mathematical operators for, 21
products of array elements, 28–29
standard error for products, 148

multiplicity, 74–75
multivariable linear regression, 14
multivariable regression, 230
multivariate regression, 229
M-W (Mann-Whitney) test, 157

• N •
names, recording, 96
National Institutes of Health (NIH), 71
natural logarithms, 23, 24
negative numbers, indicating, 21
negative predictive value (NPV), 199
NNT (number needed to treat), 201
nominal variables, 94
nomograms (alignment charts), 59–60, 

170–171, 208
noninferiority creep, 218
noninferiority testing, 13, 214–218
nonlinear functions, 231, 299
nonlinear least-squares regression, 14
nonlinear regression

drug research example, 300–302
interpreting output of, 304–305
as least-squares regression, 291
nonlinear functions, 299
other regressions versus, 299–300
running, 302–303
using equivalent functions to fit 

parameters, 305–306
nonlinear trends, Poisson regression for, 

296–297
nonparametric regression, 306
nonparametric tests, 49, 50, 169
nonsuperiority, confidence intervals for, 217
normal distribution, 37, 106, 157, 360–361
normality assumption, 157
not rule for probability, 32
NPV (negative predictive value), 199
nuisance variables, 158, 187–188
null hypothesis (H0), 41, 43–45
null model, 248
number needed to treat (NNT), 201
numerical data

in data dictionary, 102
in Excel, 99
graphing, 115–120
grouping in intervals, avoiding, 98
recording, 98–99
structuring summaries in tables, 114–115
summarizing, 106–114

numerical variables, 98–99, 255–256
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• O •
objectives of a study, 62
odds, 33–34, 195
odds ratio (OR), 188, 195–197, 286–287
Office for Human Research Protections 

(OHRP), 71
one-dimensional arrays, 26–27
one-sided confidence interval, 136
OpenStat software, 55
operator variability, 125
or rule for probability, 33
order of precedence for formulas, 25–26
ordinal data, 94, 185–187. See also 

categorical data
ordinary, defined, 252
ordinary multiple linear regression. See 

multiple regression
ordinary regression, 230
outliers, 111–112, 249
overall accuracy, 198, 281

• P •
p value

chi-square test for determining, 178–179
confidence interval compared to, 142
defined, 42
Fisher Exact test for, 181–183
logistic regression, 277
multiple regression, 260
significance in reference to, 2, 190
straight-line regression, 246
survival regression, 350
as a test result, 43

paper calculators, 59–60
parallel structure of a study, 64
parameter error-correlations matrix, 260
parametric distribution functions, 49
parametric tests, 49, 50
parentheses [( )], multiplication indicated 

by, 21
Pearson chi-square test

basic formulas for, 180
calculating observed and expected 

counts, 175–177

cell naming and notation, 179
degrees of freedom for, 179
determining the p value, 178–179
development of, 174
Kendall test versus, 186
power and sample size calculation for, 

183–185
pros and cons of, 180
summarizing and combining scaled 

differences, 177–178
Yates continuity correction for, 181, 184

Pearson correlation coefficient
described, 222
precision of r value, 224–225
r significantly different from zero, 223–224
sample size required for test, 226
significant difference in two r values, 225
in straight-line regression, 247
for straight-line relationships only, 223

Pearson, Karl (statistician), 174, 222
Pearson kurtosis index, 114
percentages, 32, 104. See also proportions
per-protocol (PP) population, 67
person-time data. See event counts or rates
pharmacokinetics/pharmacodynamics 

(PK/PD) studies, 86–88, 300–302
physical factors in precision, 125
pi, lowercase (π) constant, defined, 19
pi, uppercase (Π) as array symbol, 29
pie charts, 105
pivotal Phase III studies, 85
placebo effect, 65
plain text format

absolute values in, 25
arrays in, 27, 29
division in, 22
logarithms in, 23
multiplication in, 21
powers in, 22
roots in, 23
scientific notation in, 30
typeset format compared to, 18

platykurtic distribution, 114
Plummer, W. D. (software developer), 56
plus sign (+), addition indicated by, 20
pointy-topped distribution, 106, 114
Poisson distribution, 37, 298, 362–363
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Poisson regression
with clustered events, 298
for comparing alternative models, 297–298
described, 14, 230
interpreting output of, 295–296
for nonlinear trends, 296–297
running, 293–294
with unequal observation intervals, 298

PopTools software, 56
population parameter, 122
populations

analytical, 67, 69
as confidence interval focus, 134
defined, 36
mode for distribution of, 108

positive control, 214, 217
positive predictive value (PPV), 199
post-hoc tests for ANOVA, 165–166
power of a test

calculating for chi-square and Fisher 
Exact tests, 183–185

defined, 42
effect size relationship to, 45, 46–48
factors affecting, 45
methods for calculating, 48
for sample-size calculation, 226
sample size relationship to, 45, 46, 47–48
scaling sample size for, 372

powers, 22–23, 149
PP (per-protocol) population, 67
precedence order for formulas, 25–26
precision

accuracy versus, 38–39, 121
defined, 38, 121
improving for measurements, 128
improving for sampling, 127–128
of incidence rate, 205–206
measurement imprecision, 125
of numerical data, 98–99
of r value, 224–225
random errors affecting, 125
of sample statistic, 123
sample-size estimation for, 132
sampling imprecision, 125

preclinical studies, 78–79
predictors, 230, 274, 286–287

prevalence, 204, 205
primary objectives, 62
printed calculators, 59–60
privacy considerations, 70
probability

and rule for, 32–33
defined, 31
not rule for, 32
numbers between 0 and 1 for, 32
odds compared to, 33–34
or rule for, 33
percentages for, 32

probability distributions. See distributions
procedural descriptions, 69
product description for a study, 69
programmable calculators, 57
programs. See software
propagation of errors. See error 

propagation
proportional-hazards regression, 347–348, 

353–356
proportions

confidence interval around, 139
fourfold table for comparing, 174
between-group difference, 200–201
prevalence, 204, 205
standard error of, 130

protocol components of a study, 68–70
PS software, 56–57
pseudo R-square values, 277

• Q •
QT interval, 89
QT safety studies, 212, 213, 214, 215
QT/QTc (thorough QT) trials, 88–90
quartiles, 112
quintiles, 112

• R •
r. See Pearson correlation coefficient
R (incidence rate), 204–207
R software, 56, 295
raised dot (·), multiplication indicated by, 21
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randomization
advantages of, 65
of data versus numbers, 34
imprecision from errors in, 125
prediction not possible with, 35
in study protocol, 69
using in a study, 64–66

randomized controlled trials (RCTs), 64–66
range of a set of values, 111–112
rate ratio (RR), 206–207, 208
ratio data, 94
rationale for a study, 68
ratios, standard error for, 148
Receiver Operator Characteristics (ROC) 

curve, 283–285
recording data

Case Report Form (CRF) for, 63
categorical data, 96–98
censoring information, 327–328
dates and times, 99–101
in Excel, 97, 99
free-text data, 95
ID numbers, 95–96
names and addresses, 96
numerical data, 98–99
simple method for, 63
survival times, 327

reference level for multiple regression, 255
regression analysis. See also specific types

correlation coefficient analysis versus, 239
generalized linear model, 292–293
linear versus nonlinear functions for, 231
logistic regression, 14, 230, 267–289
LOWESS regression, 306–310
multiple regression, 251–265
nonlinear regression, 298–306
number of outcomes, 229
number of predictors, 230
outcome variable’s type of data, 230–231
Poisson regression, 14, 230, 291–298
purpose of, 227–228
software needed for calculations, 236
straight-line regression, 233–250
survival regression, 339–356
terms and notation used in, 228–229
types of, 14, 229–232
univariable versus multivariable, 230
univariate versus multivariate, 229

regression coefficients
confidence interval around, 141
standard error of, 131–132, 244–245, 350
survival regression, 350

regression, defined, 221
regression table

importance of, 243
for logistic regression, 278
for multiple regression, 260
for straight-line regression, 244–246

regulatory agencies, 71, 80
relative risk (RR), 194–195
Remember icon, 5
repeated-measures analysis of variance 

(RM-ANOVA), 159–160
residual standard error, 242, 260
residuals, 241–243, 259, 260
residuals versus fitted graph, 242–243, 249
risk evaluation mitigation strategy 

(REMS), 86
risk factor assessment

odds ratio, 195–197
relative risk (RR), 194–195

risk ratio, assessing, 194–195
ROC (Receiver Operator Characteristics) 

curve, 283–285
root-mean-square (RMS), 110
root-mean-square (RMS) error, 242
roots, 23, 149
RR (rate ratio), 206–207
RR (relative risk), 194–195
Rumsey, Deborah J. (Statistics For 

Dummies), 3

• S •
s. See standard deviation
S Plus software, 55
safety considerations

certification in human subjects 
protection, 72

indicators for drugs, 83
Informed Consent Form, 71–72
Institutional Review Boards, 71
monitoring board or committee, 72
Phase II in drug testing, 82–84
protecting your subjects, 70–72
regulatory agencies, 71
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safety objective, 62
safety population, 67, 69
in study protocol, 69

sample
defined, 36
determining suitable subjects, 63–64
exclusion criteria, 64, 126
fourfold table strategies, 191–192
imprecision sources in, 125
improving accuracy of, 126
improving precision of, 127–128
inaccuracy in, 124
inclusion criteria, 64, 126, 128
measurement as, 123–124
perfection not possible for, 36
randomization of, 64–66
selection bias, 65
as standard error focus, 134

sample size
effect size relationship to, 47–48, 170–171
power affected by, 45, 46
standard error affected by, 127
in study protocol, 69

sample statistic, 122, 123, 190
sample-size estimation

to achieve precision desired, 132
adjusting for unequal group sizes, 373–374
allowing for attrition, 374
Cheat Sheet for, 48
for clinical study, 67–68
for comparing averages, 169–171
for comparing means, 370
for comparing paired values, 370
for comparing proportions, 371
for comparing survival, 337–338, 371–372
for correlation test, 226
for Fisher Exact test, 183–185
free software for, 56–57
importance of, 15
for logistic regression, 288–289
for multiple regression, 265
nomograms for, 170–171
for noninferiority testing, 218
for Pearson chi-square test, 183–185
for rate comparisons, 209–210
scaling from 0.05 to another alpha 

level, 373

scaling from 80% to another power, 372
for significant correlation, 371
simple formulas for, 169
software for, 170
for straight-line regression, 249–250
for survival regression, 356
web-based calculators for, 170

SAP (Statistical Analysis Plan), 69
SAS software, 52–53
scatter plots

LOWESS regression, 306–310
multiple regression, 256–258, 260
straight-line regression, 234, 235, 238–239

Scheffe’s test, 166
scientific calculators, 57
scientific notation, 30
Score Test. See log-rank test
SD or sd. See standard deviation
SE. See standard error
secondary objectives, 62
selection bias, 65
sensitivity of a test, 198, 282
significance

defined, 42
with multicollinearity, 263–264, 285
in reference to p value, 2, 190
statistical, 43
testing for, 42–43

significance tests, 42, 214–215
simple linear regression. See straight-line 

regression
simulating error propagation, 152
single-blinding, 65
skewed distribution, 106, 113, 117–118
skewness coefficients, 113
slash (/), division indicated by, 22
slope, 131–132, 244
smoothing fraction for LOWESS, 309–310
software. See also specific types

apps, 48, 58
case-level data with, 174
case-sensitivity of, 25
cloud-based systems, 59
computer, 48, 51–57
field-length limitations of, 95
indicating factorials in, 24
for logistic regression, 274–275
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software (continued)
for log-rank test, 333
for multiple regression, 254–258
for power calculation, 48
required for regression, 236
for sample-size estimation, 170
sources of, 10
web-based, 48, 58–59

specificity of a test, 198–199, 282
sphericity, RM-ANOVA issue with, 160
spreadsheet programs, 54, 101. See also 

Excel software
SPSS software, 53
square-root transformation, 117
standard deviation (SD, sd, or s)

formula for, 110
of Poisson distribution, 298
of population distributions, 111
of sample versus population, 36
sensitivity to outliers, 111
Student t test assumption about, 157

standard error (SE). See also error 
propagation

of average of N equally precise 
numbers, 148

confidence interval versus, 134
described, 12, 40, 125
of differences, 177
estimating for single-variable expressions, 

144–145
of event counts and rates, 130–131
of means, 129–130
multiplying or dividing by a constant, 147
not changed by adding or subtracting a 

constant, 146
in Poisson regression, 295
for powers and roots, 149
for products and ratios, 148
of proportions, 130
of regression coefficients, 131–132,  

244–245, 350
of residuals, 242, 260
sample size affecting, 127
sample-size estimation using, 132
Student t test calculation of, 162
when adding or subtracting two 

measurements, 147

Stata software, 55
statistic, defined, 42
Statistical Analysis Plan (SAP), 69
statistical decision theory, 12–14, 40–41
statistical estimation theory, 12, 38–40
statistical inference, 38
Statistics For Dummies (Rumsey), 3
Sterling, Mary Jane

Algebra I For Dummies, 17, 30
Algebra II For Dummies, 17

straight-line regression
conditions suitable for, 234–235
correlation coefficient, 247
error sources in, 249
example, 237–239
F statistic, 247–248
formulas for, 235–236
gathering data for, 237–238
goodness-of-fit indicators, 247–248
intercept, 244
interpreting output of, 239–248
other names for, 233
p value, 246
prediction formula, 248
regression table for, 243–246
residuals from, 241–243
sample-size estimation for, 249–250
scatter plot creation, 238–239
slope, 244
software needed for calculations, 236
standard error of coefficients, 244–245
steps for, 237
Student t value, 246
t value, 246
typical output of, 240
variables for, 233

stratification, 187–188
stratified Cochran-Mantel-Haenszel test. 

See log-rank test
Student t distribution, 364–365
Student t tests

assumptions about data in, 157
basic idea of, 161–162
calculation of difference, standard error, 

and degrees of freedom by, 162
for comparing matched pairs, 159
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for comparing mean to hypothesized 
value, 156

for comparing two groups, 157
F test for equal variances, 164
interpreting output of, 163–164
for matched-pair data, 159
one-group, 156, 162
paired, 159, 163
running, 162–163
on summary data, 168–169
unpaired or independent sample, 157, 163
Welch, 157, 162–163

subject-to-subject variability, 125
subtraction, 20
summary statistics

for categorical data, 104
defined, 103
for numerical data, 106–114
for residuals, 241–242
structuring in tables, 114–115
Student t and ANOVA tests with, 168–169

superscripting, powers indicated by, 22
survival analysis

applicability to other events, 313, 331, 339
comparing survival times, 330, 331–338
custom prognosis chart, 330
determining factors affecting survival, 330
estimating censored data, 318–328
five-year (or other time) survival rate, 329
median (or centile) survival time, 329
survival regression, 231, 339–356

survival data. See also estimating censored 
data

censoring of, 315–318
estimating censored data, 318–328
interpreting survival curves, 328
as interval data, 314
non-normality of, 314–315
overview, 14–15
techniques not applicable to, 314–315, 

317–318
survival rate

defined, 316
estimating censored data, 318–328
five-year (or other time), 329
graphing from a life table, 324
interpreting life-table output, 323

survival regression
baseline hazard function, 342
baseline survival function, 342
with censored data, 341
concepts behind, 340–345
constructing prognosis curves, 353–356
Cox PH regression, 341–345
described, 231
goodness-of-fit indicators, 351–352
hazard ratios, 345, 350–351
interpreting output of, 347–352
linear combination for, 340–341
with nonparametric versus parametric 

survival curves, 341
proportional-hazards regression, 347–348, 

353–356
running, 346–347
sample-size estimation, 356
table regression coefficients, 350
testing validity of assumptions, 349
uses for, 340

survival times
comparing between groups, 330, 331–337
median (or centile), 329
recording correctly, 327

symbolic representation of constants, 19
synergistic effect, 263
systematic errors, 124–125

• T •
t value, 246, 260
tables. See also fourfold tables; graphs and 

charts
life table, 318–328
for power calculation, 48
of probability distributions, 37
of regression coefficients, 60, 243–246, 278
structuring numerical summaries in, 

114–115
Technical Stuff icon, 2, 5
terachoric correlation coefficient, 193–194
test statistic, 42–43
tetrachoric correlation coefficient, 193–194
theoretical molecular studies, 79
therapeutic noninferiority, 211
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therapeutic noninferiority studies, 
212, 213, 214, 215

therapeutic range for a drug, 84
thorough QT (TQT or QT/QTc) trials, 

88–90
3D charts, avoiding, 105
tied values, 50
times and dates, 99–101, 102
time-to-event data. See survival data
Tip icon, 6
title of a study, 68
Torsades de Points (TdP), 88
trimmed mean, 109
Tukey-Kramer test, 166
Tukey’s HSD test, 166
two-dimensional arrays, 27, 28
two-way tables. See cross-tabulation
Type I error, 42, 44, 45, 74–75
Type II error, 42, 44

• U •
unary operator, 21
unbalanced confidence interval, 135
unequal observation intervals, Poisson 

regression with, 298
unequal-variance t (Welch t) test,  

157, 163–164
uniform distribution, 360
univariable regression, 230
univariate regression, 229

• V •
validating data, 73, 101
variables

case of, 20
categorical, 35, 104, 254–256
continuous, 35
in data dictionary, 102
for dates and times, 99–100
defined, in different fields, 19–20

free-text, 95
identifying for a study, 63
for names and addresses, 96
nominal, 94
numerical, 98–99, 255–256
sorting values to check errors, 101
unary operator for, 21

variance, 111
variance table from ANOVA, 166–167
vectors, 27. See also arrays
vertical bars (||), absolute value indicated 

by, 25

• W •
Warning! icon, 6
web resources, 59
web-based software

calculators for error propagation,  
150–151

calculators for power, 48
defined, 58
for fourfold tables, 190
for sample-size estimation, 170
statistics packages, 59

Weibull distribution, 364
Welch t test, 157, 163–164
Welch unequal-variance ANOVA, 158
Wilcoxon Signed-Ranks (WSR) test, 156, 159
Wilcoxon Sum-of-Ranks (WSOR) test, 157
withdrawal criteria, 64
within-subject variability, 125

• Y •
Yates continuity correction, 181, 184
yes or no predictions, 280–285

• Z •
zero point, 94
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